@@ -463,6 +463,88 @@ lipschitz_with_iff_norm_sub_le.2 $ λ f g, ((f - g).le_op_norm x).trans_eq (mul_
463
463
464
464
end
465
465
466
+ section Sup
467
+
468
+ variables [ring_hom_isometric σ₁₂]
469
+
470
+ lemma exists_mul_lt_apply_of_lt_op_nnnorm (f : E →SL[σ₁₂] F) {r : ℝ≥0 } (hr : r < ∥f∥₊) :
471
+ ∃ x, r * ∥x∥₊ < ∥f x∥₊ :=
472
+ by simpa only [not_forall, not_le, set.mem_set_of] using not_mem_of_lt_cInf
473
+ (nnnorm_def f ▸ hr : r < Inf {c : ℝ≥0 | ∀ x, ∥f x∥₊ ≤ c * ∥x∥₊}) (order_bot.bdd_below _)
474
+
475
+ lemma exists_mul_lt_of_lt_op_norm (f : E →SL[σ₁₂] F) {r : ℝ} (hr₀ : 0 ≤ r) (hr : r < ∥f∥) :
476
+ ∃ x, r * ∥x∥ < ∥f x∥ :=
477
+ by { lift r to ℝ≥0 using hr₀, exact f.exists_mul_lt_apply_of_lt_op_nnnorm hr }
478
+
479
+ lemma exists_lt_apply_of_lt_op_nnnorm {𝕜 𝕜₂ E F : Type *} [normed_add_comm_group E]
480
+ [seminormed_add_comm_group F] [densely_normed_field 𝕜] [nontrivially_normed_field 𝕜₂]
481
+ {σ₁₂ : 𝕜 →+* 𝕜₂} [normed_space 𝕜 E] [normed_space 𝕜₂ F] [ring_hom_isometric σ₁₂]
482
+ (f : E →SL[σ₁₂] F) {r : ℝ≥0 } (hr : r < ∥f∥₊) : ∃ x : E, ∥x∥₊ < 1 ∧ r < ∥f x∥₊ :=
483
+ begin
484
+ obtain ⟨y, hy⟩ := f.exists_mul_lt_apply_of_lt_op_nnnorm hr,
485
+ have hy' : ∥y∥₊ ≠ 0 := nnnorm_ne_zero_iff.2
486
+ (λ heq, by simpa only [heq, nnnorm_zero, map_zero, not_lt_zero'] using hy),
487
+ have hfy : ∥f y∥₊ ≠ 0 := (zero_le'.trans_lt hy).ne',
488
+ rw [←inv_inv (∥f y∥₊), nnreal.lt_inv_iff_mul_lt (inv_ne_zero hfy), mul_assoc, mul_comm (∥y∥₊),
489
+ ←mul_assoc, ←nnreal.lt_inv_iff_mul_lt hy'] at hy,
490
+ obtain ⟨k, hk₁, hk₂⟩ := normed_field.exists_lt_nnnorm_lt 𝕜 hy,
491
+ refine ⟨k • y, (nnnorm_smul k y).symm ▸ (nnreal.lt_inv_iff_mul_lt hy').1 hk₂, _⟩,
492
+ have : ∥σ₁₂ k∥₊ = ∥k∥₊ := subtype.ext ring_hom_isometric.is_iso,
493
+ rwa [map_smulₛₗ f, nnnorm_smul, ←nnreal.div_lt_iff hfy, div_eq_mul_inv, this ],
494
+ end
495
+
496
+ lemma exists_lt_apply_of_lt_op_norm {𝕜 𝕜₂ E F : Type *} [normed_add_comm_group E]
497
+ [seminormed_add_comm_group F] [densely_normed_field 𝕜] [nontrivially_normed_field 𝕜₂]
498
+ {σ₁₂ : 𝕜 →+* 𝕜₂} [normed_space 𝕜 E] [normed_space 𝕜₂ F] [ring_hom_isometric σ₁₂]
499
+ (f : E →SL[σ₁₂] F) {r : ℝ} (hr : r < ∥f∥) : ∃ x : E, ∥x∥ < 1 ∧ r < ∥f x∥ :=
500
+ begin
501
+ by_cases hr₀ : r < 0 ,
502
+ { exact ⟨0 , by simpa using hr₀⟩, },
503
+ { lift r to ℝ≥0 using not_lt.1 hr₀,
504
+ exact f.exists_lt_apply_of_lt_op_nnnorm hr, }
505
+ end
506
+
507
+ lemma Sup_unit_ball_eq_nnnorm {𝕜 𝕜₂ E F : Type *} [normed_add_comm_group E]
508
+ [seminormed_add_comm_group F] [densely_normed_field 𝕜] [nontrivially_normed_field 𝕜₂]
509
+ {σ₁₂ : 𝕜 →+* 𝕜₂} [normed_space 𝕜 E] [normed_space 𝕜₂ F] [ring_hom_isometric σ₁₂]
510
+ (f : E →SL[σ₁₂] F) : Sup ((λ x, ∥f x∥₊) '' ball 0 1 ) = ∥f∥₊ :=
511
+ begin
512
+ refine cSup_eq_of_forall_le_of_forall_lt_exists_gt ((nonempty_ball.mpr zero_lt_one).image _)
513
+ _ (λ ub hub, _),
514
+ { rintro - ⟨x, hx, rfl⟩,
515
+ simpa only [mul_one] using f.le_op_norm_of_le (mem_ball_zero_iff.1 hx).le },
516
+ { obtain ⟨x, hx, hxf⟩ := f.exists_lt_apply_of_lt_op_nnnorm hub,
517
+ exact ⟨_, ⟨x, mem_ball_zero_iff.2 hx, rfl⟩, hxf⟩ },
518
+ end
519
+
520
+ lemma Sup_unit_ball_eq_norm {𝕜 𝕜₂ E F : Type *} [normed_add_comm_group E]
521
+ [seminormed_add_comm_group F] [densely_normed_field 𝕜] [nontrivially_normed_field 𝕜₂]
522
+ {σ₁₂ : 𝕜 →+* 𝕜₂} [normed_space 𝕜 E] [normed_space 𝕜₂ F] [ring_hom_isometric σ₁₂]
523
+ (f : E →SL[σ₁₂] F) : Sup ((λ x, ∥f x∥) '' ball 0 1 ) = ∥f∥ :=
524
+ by simpa only [nnreal.coe_Sup, set.image_image] using nnreal.coe_eq.2 f.Sup_unit_ball_eq_nnnorm
525
+
526
+ lemma Sup_closed_unit_ball_eq_nnnorm {𝕜 𝕜₂ E F : Type *} [normed_add_comm_group E]
527
+ [seminormed_add_comm_group F] [densely_normed_field 𝕜] [nontrivially_normed_field 𝕜₂]
528
+ {σ₁₂ : 𝕜 →+* 𝕜₂} [normed_space 𝕜 E] [normed_space 𝕜₂ F] [ring_hom_isometric σ₁₂]
529
+ (f : E →SL[σ₁₂] F) : Sup ((λ x, ∥f x∥₊) '' closed_ball 0 1 ) = ∥f∥₊ :=
530
+ begin
531
+ have hbdd : ∀ y ∈ (λ x, ∥f x∥₊) '' closed_ball 0 1 , y ≤ ∥f∥₊,
532
+ { rintro - ⟨x, hx, rfl⟩, exact f.unit_le_op_norm x (mem_closed_ball_zero_iff.1 hx) },
533
+ refine le_antisymm (cSup_le ((nonempty_closed_ball.mpr zero_le_one).image _) hbdd) _,
534
+ rw ←Sup_unit_ball_eq_nnnorm,
535
+ exact cSup_le_cSup ⟨∥f∥₊, hbdd⟩ ((nonempty_ball.2 zero_lt_one).image _)
536
+ (set.image_subset _ ball_subset_closed_ball),
537
+ end
538
+
539
+ lemma Sup_closed_unit_ball_eq_norm {𝕜 𝕜₂ E F : Type *} [normed_add_comm_group E]
540
+ [seminormed_add_comm_group F] [densely_normed_field 𝕜] [nontrivially_normed_field 𝕜₂]
541
+ {σ₁₂ : 𝕜 →+* 𝕜₂} [normed_space 𝕜 E] [normed_space 𝕜₂ F] [ring_hom_isometric σ₁₂]
542
+ (f : E →SL[σ₁₂] F) : Sup ((λ x, ∥f x∥) '' closed_ball 0 1 ) = ∥f∥ :=
543
+ by simpa only [nnreal.coe_Sup, set.image_image] using nnreal.coe_eq.2
544
+ f.Sup_closed_unit_ball_eq_nnnorm
545
+
546
+ end Sup
547
+
466
548
section
467
549
468
550
lemma op_norm_ext [ring_hom_isometric σ₁₃] (f : E →SL[σ₁₂] F) (g : E →SL[σ₁₃] G)
0 commit comments