@@ -81,23 +81,23 @@ theorem eq_tt_of_ne_ff : ∀ {a : bool}, a ≠ ff → a = tt := dec_trivial
81
81
82
82
theorem eq_ff_of_ne_tt : ∀ {a : bool}, a ≠ tt → a = ff := dec_trivial
83
83
84
- @[simp] theorem bor_comm : ∀ a b, a || b = b || a := dec_trivial
84
+ theorem bor_comm : ∀ a b, a || b = b || a := dec_trivial
85
85
86
86
@[simp] theorem bor_assoc : ∀ a b c, (a || b) || c = a || (b || c) := dec_trivial
87
87
88
- @[simp] theorem bor_left_comm : ∀ a b c, a || (b || c) = b || (a || c) := dec_trivial
88
+ theorem bor_left_comm : ∀ a b c, a || (b || c) = b || (a || c) := dec_trivial
89
89
90
90
theorem bor_inl {a b : bool} (H : a) : a || b :=
91
91
by simp [H]
92
92
93
93
theorem bor_inr {a b : bool} (H : b) : a || b :=
94
94
by simp [H]
95
95
96
- @[simp] theorem band_comm : ∀ a b, a && b = b && a := dec_trivial
96
+ theorem band_comm : ∀ a b, a && b = b && a := dec_trivial
97
97
98
98
@[simp] theorem band_assoc : ∀ a b c, (a && b) && c = a && (b && c) := dec_trivial
99
99
100
- @[simp] theorem band_left_comm : ∀ a b c, a && (b && c) = b && (a && c) := dec_trivial
100
+ theorem band_left_comm : ∀ a b c, a && (b && c) = b && (a && c) := dec_trivial
101
101
102
102
theorem band_elim_left : ∀ {a b : bool}, a && b → a := dec_trivial
103
103
@@ -113,9 +113,9 @@ theorem eq_tt_of_bnot_eq_ff : ∀ {a : bool}, bnot a = ff → a = tt := dec_triv
113
113
114
114
theorem eq_ff_of_bnot_eq_tt : ∀ {a : bool}, bnot a = tt → a = ff := dec_trivial
115
115
116
- @[simp] theorem bxor_comm : ∀ a b, bxor a b = bxor b a := dec_trivial
116
+ theorem bxor_comm : ∀ a b, bxor a b = bxor b a := dec_trivial
117
117
@[simp] theorem bxor_assoc : ∀ a b c, bxor (bxor a b) c = bxor a (bxor b c) := dec_trivial
118
- @[simp] theorem bxor_left_comm : ∀ a b c, bxor a (bxor b c) = bxor b (bxor a c) := dec_trivial
118
+ theorem bxor_left_comm : ∀ a b c, bxor a (bxor b c) = bxor b (bxor a c) := dec_trivial
119
119
@[simp] theorem bxor_bnot_left : ∀ a, bxor (!a) a = tt := dec_trivial
120
120
@[simp] theorem bxor_bnot_right : ∀ a, bxor a (!a) = tt := dec_trivial
121
121
@[simp] theorem bxor_bnot_bnot : ∀ a b, bxor (!a) (!b) = bxor a b := dec_trivial
0 commit comments