Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit b1d0501

Browse files
jcommelindigama0
authored andcommitted
fix(analysis/topology/topological_space): Improve the lattice structure on opens (#511)
1 parent 1f72be1 commit b1d0501

File tree

1 file changed

+26
-2
lines changed

1 file changed

+26
-2
lines changed

analysis/topology/topological_space.lean

Lines changed: 26 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1758,10 +1758,34 @@ def gi : @galois_insertion (order_dual (set α)) (order_dual (opens α)) _ _ int
17581758
le_l_u := λ _, interior_subset,
17591759
choice_eq := λ s hs, le_antisymm interior_subset hs }
17601760

1761+
@[simp] lemma gi_choice_val {s : order_dual (set α)} {hs} : (gi.choice s hs).val = s := rfl
1762+
17611763
instance : complete_lattice (opens α) :=
1762-
@order_dual.lattice.complete_lattice _
1764+
complete_lattice.copy
1765+
(@order_dual.lattice.complete_lattice _
17631766
(@galois_insertion.lift_complete_lattice
1764-
(order_dual (set α)) (order_dual (opens α)) _ interior (subtype.val : opens α → set α) _ gi)
1767+
(order_dual (set α)) (order_dual (opens α)) _ interior (subtype.val : opens α → set α) _ gi))
1768+
/- le -/ (λ U V, U.1 ⊆ V.1) rfl
1769+
/- top -/ ⟨set.univ, _root_.is_open_univ⟩ (subtype.ext.mpr interior_univ.symm)
1770+
/- bot -/ ⟨∅, is_open_empty⟩ rfl
1771+
/- sup -/ (λ U V, ⟨U.1 ∪ V.1, _root_.is_open_union U.2 V.2⟩) rfl
1772+
/- inf -/ (λ U V, ⟨U.1 ∩ V.1, _root_.is_open_inter U.2 V.2⟩)
1773+
begin
1774+
funext,
1775+
apply subtype.ext.mpr,
1776+
symmetry,
1777+
apply interior_eq_of_open,
1778+
exact (_root_.is_open_inter U.2 V.2),
1779+
end
1780+
/- Sup -/ (λ Us, ⟨⋃₀ (subtype.val '' Us), _root_.is_open_sUnion $ λ U hU,
1781+
by { rcases hU with ⟨⟨V, hV⟩, h, h'⟩, dsimp at h', subst h', exact hV}⟩)
1782+
begin
1783+
funext,
1784+
apply subtype.ext.mpr,
1785+
simp [Sup_range],
1786+
refl,
1787+
end
1788+
/- Inf -/ _ rfl
17651789

17661790
@[simp] lemma Sup_s {Us : set (opens α)} : (Sup Us).val = ⋃₀ (subtype.val '' Us) :=
17671791
begin

0 commit comments

Comments
 (0)