Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit b2381e5

Browse files
committed
feat(analysis/locally_convex/with_seminorms): boundedness of images (#16674)
This PR adds two lemmas that are very useful in proving that semilinear maps are locally bounded (and hence continuous). We also add some documentation for these lemmas and remove documentation for the ad-hoc lemmas.
1 parent 73d05c4 commit b2381e5

File tree

1 file changed

+26
-2
lines changed

1 file changed

+26
-2
lines changed

src/analysis/locally_convex/with_seminorms.lean

Lines changed: 26 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,10 +19,24 @@ bounded by a finite number of seminorms in `E`.
1919
2020
## Main statements
2121
22-
* `continuous_from_bounded`: A bounded linear map `f : E →ₗ[𝕜] F` is continuous.
2322
* `seminorm_family.to_locally_convex_space`: A space equipped with a family of seminorms is locally
2423
convex.
2524
25+
## Continuity of semilinear maps
26+
27+
If `E` and `F` are topological vector space with the topology induced by a family of seminorms, then
28+
we have a direct method to prove that a linear map is continuous:
29+
* `seminorm.continuous_from_bounded`: A bounded linear map `f : E →ₗ[𝕜] F` is continuous.
30+
31+
If the topology of a space `E` is induced by a family of seminorms, then we can characterize von
32+
Neumann boundedness in terms of that seminorm family. Together with
33+
`linear_map.continuous_of_locally_bounded` this gives general criterion for continuity.
34+
35+
* `with_seminorms.is_vonN_bounded_iff_finset_seminorm_bounded`
36+
* `with_seminorms.is_vonN_bounded_iff_seminorm_bounded`
37+
* `with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded`
38+
* `with_seminorms.image_is_vonN_bounded_iff_seminorm_bounded`
39+
2640
## Tags
2741
2842
seminorm, locally convex
@@ -370,7 +384,12 @@ begin
370384
exact (finset.sup I p).ball_zero_absorbs_ball_zero hr,
371385
end
372386

373-
lemma bornology.is_vonN_bounded_iff_seminorm_bounded {s : set E} (hp : with_seminorms p) :
387+
lemma with_seminorms.image_is_vonN_bounded_iff_finset_seminorm_bounded (f : G → E) {s : set G}
388+
(hp : with_seminorms p) : bornology.is_vonN_bounded 𝕜 (f '' s) ↔
389+
∀ I : finset ι, ∃ r (hr : 0 < r), ∀ (x ∈ s), I.sup p (f x) < r :=
390+
by simp_rw [hp.is_vonN_bounded_iff_finset_seminorm_bounded, set.ball_image_iff]
391+
392+
lemma with_seminorms.is_vonN_bounded_iff_seminorm_bounded {s : set E} (hp : with_seminorms p) :
374393
bornology.is_vonN_bounded 𝕜 s ↔ ∀ i : ι, ∃ r (hr : 0 < r), ∀ (x ∈ s), p i x < r :=
375394
begin
376395
rw hp.is_vonN_bounded_iff_finset_seminorm_bounded,
@@ -392,6 +411,11 @@ begin
392411
exact ⟨1, zero_lt_one, λ _ _, zero_lt_one⟩,
393412
end
394413

414+
lemma with_seminorms.image_is_vonN_bounded_iff_seminorm_bounded (f : G → E) {s : set G}
415+
(hp : with_seminorms p) :
416+
bornology.is_vonN_bounded 𝕜 (f '' s) ↔ ∀ i : ι, ∃ r (hr : 0 < r), ∀ (x ∈ s), p i (f x) < r :=
417+
by simp_rw [hp.is_vonN_bounded_iff_seminorm_bounded, set.ball_image_iff]
418+
395419
end nontrivially_normed_field
396420
section continuous_bounded
397421

0 commit comments

Comments
 (0)