Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit b2518be

Browse files
feat(analysis/normed/normed_field): add one_le_(nn)norm_one for nontrivial normed rings (#13556)
Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
1 parent 81c8f31 commit b2518be

File tree

1 file changed

+7
-0
lines changed

1 file changed

+7
-0
lines changed

src/analysis/normed/normed_field.lean

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -137,6 +137,13 @@ lemma nnnorm_mul_le (a b : α) : ∥a * b∥₊ ≤ ∥a∥₊ * ∥b∥₊ :=
137137
by simpa only [←norm_to_nnreal, ←real.to_nnreal_mul (norm_nonneg _)]
138138
using real.to_nnreal_mono (norm_mul_le _ _)
139139

140+
lemma one_le_norm_one (β) [normed_ring β] [nontrivial β] : 1 ≤ ∥(1 : β)∥ :=
141+
(le_mul_iff_one_le_left $ norm_pos_iff.mpr (one_ne_zero : (1 : β) ≠ 0)).mp
142+
(by simpa only [mul_one] using norm_mul_le (1 : β) 1)
143+
144+
lemma one_le_nnnorm_one (β) [normed_ring β] [nontrivial β] : 1 ≤ ∥(1 : β)∥₊ :=
145+
one_le_norm_one β
146+
140147
lemma filter.tendsto.zero_mul_is_bounded_under_le {f g : ι → α} {l : filter ι}
141148
(hf : tendsto f l (𝓝 0)) (hg : is_bounded_under (≤) l (norm ∘ g)) :
142149
tendsto (λ x, f x * g x) l (𝓝 0) :=

0 commit comments

Comments
 (0)