|
| 1 | +/- |
| 2 | +Copyright (c) 2021 Yury Kudryashov. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Yury Kudryashov |
| 5 | +-/ |
| 6 | +import measure_theory.prod |
| 7 | + |
| 8 | +/-! |
| 9 | +# Measure preserving maps |
| 10 | +
|
| 11 | +We say that `f : α → β` is a measure preserving map w.r.t. measures `μ : measure α` and |
| 12 | +`ν : measure β` if `f` is measurable and `map f μ = ν`. In this file we define the predicate |
| 13 | +`measure_theory.measure_preserving` and prove its basic properties. |
| 14 | +
|
| 15 | +We use the term "measure preserving" because in many applications `α = β` and `μ = ν`. |
| 16 | +
|
| 17 | +## References |
| 18 | +
|
| 19 | +Partially based on |
| 20 | +[this](https://www.isa-afp.org/browser_info/current/AFP/Ergodic_Theory/Measure_Preserving_Transformations.html) |
| 21 | +Isabelle formalization. |
| 22 | +
|
| 23 | +## Tags |
| 24 | +
|
| 25 | +measure preserving map, measure |
| 26 | +-/ |
| 27 | + |
| 28 | +variables {α β γ δ : Type*} [measurable_space α] [measurable_space β] [measurable_space γ] |
| 29 | + [measurable_space δ] |
| 30 | + |
| 31 | +namespace measure_theory |
| 32 | + |
| 33 | +open measure function set |
| 34 | + |
| 35 | +variables {μa : measure α} {μb : measure β} {μc : measure γ} {μd : measure δ} |
| 36 | + |
| 37 | +/-- `f` is a measure preserving map w.r.t. measures `μa` and `μb` if `f` is measurable |
| 38 | +and `map f μa = μb`. -/ |
| 39 | +@[protect_proj] |
| 40 | +structure measure_preserving (f : α → β) (μa : measure α . volume_tac) |
| 41 | + (μb : measure β . volume_tac) : Prop := |
| 42 | +(measurable : measurable f) |
| 43 | +(map_eq : map f μa = μb) |
| 44 | + |
| 45 | +namespace measure_preserving |
| 46 | + |
| 47 | +protected lemma id (μ : measure α) : measure_preserving id μ μ := |
| 48 | +⟨measurable_id, map_id⟩ |
| 49 | + |
| 50 | +protected lemma quasi_measure_preserving {f : α → β} (hf : measure_preserving f μa μb) : |
| 51 | + quasi_measure_preserving f μa μb := |
| 52 | +⟨hf.1, hf.2.absolutely_continuous⟩ |
| 53 | + |
| 54 | +lemma comp {g : β → γ} {f : α → β} (hg : measure_preserving g μb μc) |
| 55 | + (hf : measure_preserving f μa μb) : |
| 56 | + measure_preserving (g ∘ f) μa μc := |
| 57 | +⟨hg.1.comp hf.1, by rw [← map_map hg.1 hf.1, hf.2, hg.2]⟩ |
| 58 | + |
| 59 | +protected lemma sigma_finite {f : α → β} (hf : measure_preserving f μa μb) [sigma_finite μb] : |
| 60 | + sigma_finite μa := |
| 61 | +sigma_finite.of_map μa hf.1 (by rwa hf.map_eq) |
| 62 | + |
| 63 | +lemma measure_preimage {f : α → β} (hf : measure_preserving f μa μb) |
| 64 | + {s : set β} (hs : measurable_set s) : |
| 65 | + μa (f ⁻¹' s) = μb s := |
| 66 | +by rw [← hf.map_eq, map_apply hf.1 hs] |
| 67 | + |
| 68 | +protected lemma iterate {f : α → α} (hf : measure_preserving f μa μa) : |
| 69 | + ∀ n, measure_preserving (f^[n]) μa μa |
| 70 | +| 0 := measure_preserving.id μa |
| 71 | +| (n + 1) := (iterate n).comp hf |
| 72 | + |
| 73 | +lemma skew_product [sigma_finite μb] [sigma_finite μd] |
| 74 | + {f : α → β} (hf : measure_preserving f μa μb) {g : α → γ → δ} |
| 75 | + (hgm : measurable (uncurry g)) (hg : ∀ᵐ x ∂μa, map (g x) μc = μd) : |
| 76 | + measure_preserving (λ p : α × γ, (f p.1, g p.1 p.2)) (μa.prod μc) (μb.prod μd) := |
| 77 | +begin |
| 78 | + classical, |
| 79 | + have : measurable (λ p : α × γ, (f p.1, g p.1 p.2)) := (hf.1.comp measurable_fst).prod_mk hgm, |
| 80 | + /- if `μa = 0`, then the lemma is trivial, otherwise we can use `hg` |
| 81 | + to deduce `sigma_finite μc`. -/ |
| 82 | + by_cases ha : μa = 0, |
| 83 | + { rw [← hf.map_eq, ha, zero_prod, (map f).map_zero, zero_prod], |
| 84 | + exact ⟨this, (map _).map_zero⟩ }, |
| 85 | + haveI : μa.ae.ne_bot := ae_ne_bot.2 ha, |
| 86 | + rcases hg.exists with ⟨x, hx⟩, |
| 87 | + haveI : sigma_finite μc := sigma_finite.of_map _ hgm.of_uncurry_left (by rwa hx), |
| 88 | + clear hx x, |
| 89 | + refine ⟨this, (prod_eq $ λ s t hs ht, _).symm⟩, |
| 90 | + rw [map_apply this (hs.prod ht)], |
| 91 | + refine (prod_apply (this $ hs.prod ht)).trans _, |
| 92 | + have : ∀ᵐ x ∂μa, μc ((λ y, (f x, g x y)) ⁻¹' s.prod t) = indicator (f ⁻¹' s) (λ y, μd t) x, |
| 93 | + { refine hg.mono (λ x hx, _), |
| 94 | + simp only [mk_preimage_prod_right_fn_eq_if, indicator_apply, mem_preimage], |
| 95 | + split_ifs, |
| 96 | + { rw [← map_apply hgm.of_uncurry_left ht, hx] }, |
| 97 | + { exact measure_empty } }, |
| 98 | + simp only [preimage_preimage], |
| 99 | + rw [lintegral_congr_ae this, lintegral_indicator _ (hf.1 hs), |
| 100 | + set_lintegral_const, hf.measure_preimage hs, mul_comm] |
| 101 | +end |
| 102 | + |
| 103 | +/-- If `f : α → β` sends the measure `μa` to `μb` and `g : γ → δ` sends the measure `μc` to `μd`, |
| 104 | +then `prod.map f g` sends `μa.prod μc` to `μb.prod μd`. -/ |
| 105 | +lemma prod [sigma_finite μb] [sigma_finite μd] {f : α → β} {g : γ → δ} |
| 106 | + (hf : measure_preserving f μa μb) (hg : measure_preserving g μc μd) : |
| 107 | + measure_preserving (prod.map f g) (μa.prod μc) (μb.prod μd) := |
| 108 | +have measurable (uncurry $ λ _ : α, g), from (hg.1.comp measurable_snd), |
| 109 | +hf.skew_product this $ filter.eventually_of_forall $ λ _, hg.map_eq |
| 110 | + |
| 111 | +end measure_preserving |
| 112 | + |
| 113 | +end measure_theory |
0 commit comments