Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit b75fd41

Browse files
committed
feat(analysis/normed_space/basic): the left-regular representation is an isometry for (even non-unital) C⋆-algebras (#16964)
This is a key tool to show that the multiplier algebra is a C⋆-algebra. - [x] depends on: #16963
1 parent 1499a80 commit b75fd41

File tree

1 file changed

+60
-0
lines changed

1 file changed

+60
-0
lines changed

src/analysis/normed_space/star/basic.lean

Lines changed: 60 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,7 @@ Authors: Frédéric Dupuis
77
import analysis.normed.group.hom
88
import analysis.normed_space.basic
99
import analysis.normed_space.linear_isometry
10+
import analysis.normed_space.operator_norm
1011
import algebra.star.self_adjoint
1112
import algebra.star.unitary
1213

@@ -107,6 +108,9 @@ by { nth_rewrite 0 [←star_star x], simp only [norm_star_mul_self, norm_star] }
107108
lemma norm_star_mul_self' {x : E} : ∥x⋆ * x∥ = ∥x⋆∥ * ∥x∥ :=
108109
by rw [norm_star_mul_self, norm_star]
109110

111+
lemma nnnorm_self_mul_star {x : E} : ∥x * star x∥₊ = ∥x∥₊ * ∥x∥₊ :=
112+
subtype.ext norm_self_mul_star
113+
110114
lemma nnnorm_star_mul_self {x : E} : ∥x⋆ * x∥₊ = ∥x∥₊ * ∥x∥₊ :=
111115
subtype.ext norm_star_mul_self
112116

@@ -251,3 +255,59 @@ variables {𝕜}
251255
lemma starₗᵢ_apply {x : E} : starₗᵢ 𝕜 x = star x := rfl
252256

253257
end starₗᵢ
258+
259+
section mul
260+
261+
open continuous_linear_map
262+
263+
variables (𝕜) [densely_normed_field 𝕜] [non_unital_normed_ring E] [star_ring E] [cstar_ring E]
264+
variables [normed_space 𝕜 E] [is_scalar_tower 𝕜 E E] [smul_comm_class 𝕜 E E] (a : E)
265+
266+
/-- In a C⋆-algebra `E`, either unital or non-unital, multiplication on the left by `a : E` has
267+
norm equal to the norm of `a`. -/
268+
@[simp] lemma op_nnnorm_mul : ∥mul 𝕜 E a∥₊ = ∥a∥₊ :=
269+
begin
270+
rw ←Sup_closed_unit_ball_eq_nnnorm,
271+
refine cSup_eq_of_forall_le_of_forall_lt_exists_gt _ _ (λ r hr, _),
272+
{ exact (metric.nonempty_closed_ball.mpr zero_le_one).image _ },
273+
{ rintro - ⟨x, hx, rfl⟩,
274+
exact ((mul 𝕜 E a).unit_le_op_norm x $ mem_closed_ball_zero_iff.mp hx).trans
275+
(op_norm_mul_apply_le 𝕜 E a) },
276+
{ have ha : 0 < ∥a∥₊ := zero_le'.trans_lt hr,
277+
rw [←inv_inv (∥a∥₊), nnreal.lt_inv_iff_mul_lt (inv_ne_zero ha.ne')] at hr,
278+
obtain ⟨k, hk₁, hk₂⟩ := normed_field.exists_lt_nnnorm_lt 𝕜 (mul_lt_mul_of_pos_right hr $
279+
nnreal.inv_pos.2 ha),
280+
refine ⟨_, ⟨k • star a, _, rfl⟩, _⟩,
281+
{ simpa only [mem_closed_ball_zero_iff, norm_smul, one_mul, norm_star] using
282+
(nnreal.le_inv_iff_mul_le ha.ne').1 (one_mul ∥a∥₊⁻¹ ▸ hk₂.le : ∥k∥₊ ≤ ∥a∥₊⁻¹) },
283+
{ simp only [map_smul, nnnorm_smul, mul_apply', mul_smul_comm, cstar_ring.nnnorm_self_mul_star],
284+
rwa [←nnreal.div_lt_iff (mul_pos ha ha).ne', div_eq_mul_inv, mul_inv, ←mul_assoc] } },
285+
end
286+
287+
/-- In a C⋆-algebra `E`, either unital or non-unital, multiplication on the right by `a : E` has
288+
norm eqaul to the norm of `a`. -/
289+
@[simp] lemma op_nnnorm_mul_flip : ∥(mul 𝕜 E).flip a∥₊ = ∥a∥₊ :=
290+
begin
291+
rw [←Sup_unit_ball_eq_nnnorm, ←nnnorm_star, ←@op_nnnorm_mul 𝕜 E, ←Sup_unit_ball_eq_nnnorm],
292+
congr' 1,
293+
simp only [mul_apply', flip_apply],
294+
refine set.subset.antisymm _ _;
295+
rintro - ⟨b, hb, rfl⟩;
296+
refine ⟨star b, by simpa only [norm_star, mem_ball_zero_iff] using hb, _⟩,
297+
{ simp only [←star_mul, nnnorm_star] },
298+
{ simpa using (nnnorm_star (star b * a)).symm }
299+
end
300+
301+
variables (E)
302+
303+
/-- In a C⋆-algebra `E`, either unital or non-unital, the left regular representation is an
304+
isometry. -/
305+
lemma mul_isometry : isometry (mul 𝕜 E) :=
306+
add_monoid_hom_class.isometry_of_norm _ (λ a, congr_arg coe $ op_nnnorm_mul 𝕜 a)
307+
308+
/-- In a C⋆-algebra `E`, either unital or non-unital, the right regular anti-representation is an
309+
isometry. -/
310+
lemma mul_flip_isometry : isometry (mul 𝕜 E).flip :=
311+
add_monoid_hom_class.isometry_of_norm _ (λ a, congr_arg coe $ op_nnnorm_mul_flip 𝕜 a)
312+
313+
end mul

0 commit comments

Comments
 (0)