@@ -7,6 +7,7 @@ Authors: Frédéric Dupuis
7
7
import analysis.normed.group.hom
8
8
import analysis.normed_space.basic
9
9
import analysis.normed_space.linear_isometry
10
+ import analysis.normed_space.operator_norm
10
11
import algebra.star.self_adjoint
11
12
import algebra.star.unitary
12
13
@@ -107,6 +108,9 @@ by { nth_rewrite 0 [←star_star x], simp only [norm_star_mul_self, norm_star] }
107
108
lemma norm_star_mul_self' {x : E} : ∥x⋆ * x∥ = ∥x⋆∥ * ∥x∥ :=
108
109
by rw [norm_star_mul_self, norm_star]
109
110
111
+ lemma nnnorm_self_mul_star {x : E} : ∥x * star x∥₊ = ∥x∥₊ * ∥x∥₊ :=
112
+ subtype.ext norm_self_mul_star
113
+
110
114
lemma nnnorm_star_mul_self {x : E} : ∥x⋆ * x∥₊ = ∥x∥₊ * ∥x∥₊ :=
111
115
subtype.ext norm_star_mul_self
112
116
@@ -251,3 +255,59 @@ variables {𝕜}
251
255
lemma starₗᵢ_apply {x : E} : starₗᵢ 𝕜 x = star x := rfl
252
256
253
257
end starₗᵢ
258
+
259
+ section mul
260
+
261
+ open continuous_linear_map
262
+
263
+ variables (𝕜) [densely_normed_field 𝕜] [non_unital_normed_ring E] [star_ring E] [cstar_ring E]
264
+ variables [normed_space 𝕜 E] [is_scalar_tower 𝕜 E E] [smul_comm_class 𝕜 E E] (a : E)
265
+
266
+ /-- In a C⋆-algebra `E`, either unital or non-unital, multiplication on the left by `a : E` has
267
+ norm equal to the norm of `a`. -/
268
+ @[simp] lemma op_nnnorm_mul : ∥mul 𝕜 E a∥₊ = ∥a∥₊ :=
269
+ begin
270
+ rw ←Sup_closed_unit_ball_eq_nnnorm,
271
+ refine cSup_eq_of_forall_le_of_forall_lt_exists_gt _ _ (λ r hr, _),
272
+ { exact (metric.nonempty_closed_ball.mpr zero_le_one).image _ },
273
+ { rintro - ⟨x, hx, rfl⟩,
274
+ exact ((mul 𝕜 E a).unit_le_op_norm x $ mem_closed_ball_zero_iff.mp hx).trans
275
+ (op_norm_mul_apply_le 𝕜 E a) },
276
+ { have ha : 0 < ∥a∥₊ := zero_le'.trans_lt hr,
277
+ rw [←inv_inv (∥a∥₊), nnreal.lt_inv_iff_mul_lt (inv_ne_zero ha.ne')] at hr,
278
+ obtain ⟨k, hk₁, hk₂⟩ := normed_field.exists_lt_nnnorm_lt 𝕜 (mul_lt_mul_of_pos_right hr $
279
+ nnreal.inv_pos.2 ha),
280
+ refine ⟨_, ⟨k • star a, _, rfl⟩, _⟩,
281
+ { simpa only [mem_closed_ball_zero_iff, norm_smul, one_mul, norm_star] using
282
+ (nnreal.le_inv_iff_mul_le ha.ne').1 (one_mul ∥a∥₊⁻¹ ▸ hk₂.le : ∥k∥₊ ≤ ∥a∥₊⁻¹) },
283
+ { simp only [map_smul, nnnorm_smul, mul_apply', mul_smul_comm, cstar_ring.nnnorm_self_mul_star],
284
+ rwa [←nnreal.div_lt_iff (mul_pos ha ha).ne', div_eq_mul_inv, mul_inv, ←mul_assoc] } },
285
+ end
286
+
287
+ /-- In a C⋆-algebra `E`, either unital or non-unital, multiplication on the right by `a : E` has
288
+ norm eqaul to the norm of `a`. -/
289
+ @[simp] lemma op_nnnorm_mul_flip : ∥(mul 𝕜 E).flip a∥₊ = ∥a∥₊ :=
290
+ begin
291
+ rw [←Sup_unit_ball_eq_nnnorm, ←nnnorm_star, ←@op_nnnorm_mul 𝕜 E, ←Sup_unit_ball_eq_nnnorm],
292
+ congr' 1 ,
293
+ simp only [mul_apply', flip_apply],
294
+ refine set.subset.antisymm _ _;
295
+ rintro - ⟨b, hb, rfl⟩;
296
+ refine ⟨star b, by simpa only [norm_star, mem_ball_zero_iff] using hb, _⟩,
297
+ { simp only [←star_mul, nnnorm_star] },
298
+ { simpa using (nnnorm_star (star b * a)).symm }
299
+ end
300
+
301
+ variables (E)
302
+
303
+ /-- In a C⋆-algebra `E`, either unital or non-unital, the left regular representation is an
304
+ isometry. -/
305
+ lemma mul_isometry : isometry (mul 𝕜 E) :=
306
+ add_monoid_hom_class.isometry_of_norm _ (λ a, congr_arg coe $ op_nnnorm_mul 𝕜 a)
307
+
308
+ /-- In a C⋆-algebra `E`, either unital or non-unital, the right regular anti-representation is an
309
+ isometry. -/
310
+ lemma mul_flip_isometry : isometry (mul 𝕜 E).flip :=
311
+ add_monoid_hom_class.isometry_of_norm _ (λ a, congr_arg coe $ op_nnnorm_mul_flip 𝕜 a)
312
+
313
+ end mul
0 commit comments