@@ -221,15 +221,15 @@ def id_groupoid (H : Type u) [topological_space H] : structure_groupoid H :=
221
221
rcases h with ⟨x, hx⟩,
222
222
rcases he x hx with ⟨s, open_s, xs, hs⟩,
223
223
have x's : x ∈ (e.restr s).source,
224
- { rw [restr_source, interior_eq_of_open open_s],
224
+ { rw [restr_source, open_s.interior_eq ],
225
225
exact ⟨hx, xs⟩ },
226
226
cases hs,
227
227
{ replace hs : local_homeomorph.restr e s = local_homeomorph.refl H,
228
228
by simpa only using hs,
229
229
have : (e.restr s).source = univ, by { rw hs, simp },
230
230
change (e.to_local_equiv).source ∩ interior s = univ at this ,
231
231
have : univ ⊆ interior s, by { rw ← this , exact inter_subset_right _ _ },
232
- have : s = univ, by rwa [interior_eq_of_open open_s, univ_subset_iff] at this ,
232
+ have : s = univ, by rwa [open_s.interior_eq , univ_subset_iff] at this ,
233
233
simpa only [this , restr_univ] using hs },
234
234
{ exfalso,
235
235
rw mem_set_of_eq at hs,
@@ -298,14 +298,14 @@ def pregroupoid.groupoid (PG : pregroupoid H) : structure_groupoid H :=
298
298
rcases he x xu with ⟨s, s_open, xs, hs⟩,
299
299
refine ⟨s, s_open, xs, _⟩,
300
300
convert hs.1 ,
301
- exact (interior_eq_of_open s_open) .symm },
301
+ exact s_open.interior_eq .symm },
302
302
{ apply PG.locality e.open_target (λx xu, _),
303
303
rcases he (e.symm x) (e.map_target xu) with ⟨s, s_open, xs, hs⟩,
304
304
refine ⟨e.target ∩ e.symm ⁻¹' s, _, ⟨xu, xs⟩, _⟩,
305
305
{ exact continuous_on.preimage_open_of_open e.continuous_inv_fun e.open_target s_open },
306
306
{ rw [← inter_assoc, inter_self],
307
307
convert hs.2 ,
308
- exact (interior_eq_of_open s_open) .symm } },
308
+ exact s_open.interior_eq .symm } },
309
309
end ,
310
310
eq_on_source' := λe e' he ee', begin
311
311
split,
@@ -393,7 +393,7 @@ def id_restr_groupoid : structure_groupoid H :=
393
393
rcases h x hx with ⟨s, hs, hxs, s', hs', hes'⟩,
394
394
have hes : x ∈ (e.restr s).source,
395
395
{ rw e.restr_source, refine ⟨hx, _⟩,
396
- rw interior_eq_of_open hs , exact hxs },
396
+ rw hs.interior_eq , exact hxs },
397
397
simpa only with mfld_simps using local_homeomorph.eq_on_source.eq_on hes' hes,
398
398
end ,
399
399
eq_on_source' := begin
@@ -412,7 +412,7 @@ instance closed_under_restriction_id_restr_groupoid :
412
412
rintros e ⟨s', hs', he⟩ s hs,
413
413
use [s' ∩ s, is_open_inter hs' hs],
414
414
refine setoid.trans (local_homeomorph.eq_on_source.restr he s) _,
415
- exact ⟨by simp only [interior_eq_of_open hs ] with mfld_simps, by simp only with mfld_simps⟩,
415
+ exact ⟨by simp only [hs.interior_eq ] with mfld_simps, by simp only with mfld_simps⟩,
416
416
end ⟩
417
417
418
418
/-- A groupoid is closed under restriction if and only if it contains the trivial restriction-closed
@@ -426,7 +426,7 @@ begin
426
426
rintros e ⟨s, hs, hes⟩,
427
427
refine G.eq_on_source _ hes,
428
428
convert closed_under_restriction' G.id_mem hs,
429
- rw interior_eq_of_open hs ,
429
+ rw hs.interior_eq ,
430
430
simp only with mfld_simps },
431
431
{ intros h,
432
432
split,
0 commit comments