Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit b765570

Browse files
committed
chore(topology): rename interior_eq_of_open (#3614)
This allows to use dot notation and is more consistent with its closed twin is_closed.closure_eq
1 parent 9f51e33 commit b765570

File tree

9 files changed

+31
-33
lines changed

9 files changed

+31
-33
lines changed

src/analysis/normed_space/basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -827,7 +827,7 @@ end
827827
theorem frontier_ball [normed_space ℝ E] (x : E) {r : ℝ} (hr : 0 < r) :
828828
frontier (ball x r) = sphere x r :=
829829
begin
830-
rw [frontier, closure_ball x hr, interior_eq_of_open is_open_ball],
830+
rw [frontier, closure_ball x hr, is_open_ball.interior_eq],
831831
ext x, exact (@eq_iff_le_not_lt ℝ _ _ _).symm
832832
end
833833

src/geometry/manifold/charted_space.lean

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -221,15 +221,15 @@ def id_groupoid (H : Type u) [topological_space H] : structure_groupoid H :=
221221
rcases h with ⟨x, hx⟩,
222222
rcases he x hx with ⟨s, open_s, xs, hs⟩,
223223
have x's : x ∈ (e.restr s).source,
224-
{ rw [restr_source, interior_eq_of_open open_s],
224+
{ rw [restr_source, open_s.interior_eq],
225225
exact ⟨hx, xs⟩ },
226226
cases hs,
227227
{ replace hs : local_homeomorph.restr e s = local_homeomorph.refl H,
228228
by simpa only using hs,
229229
have : (e.restr s).source = univ, by { rw hs, simp },
230230
change (e.to_local_equiv).source ∩ interior s = univ at this,
231231
have : univ ⊆ interior s, by { rw ← this, exact inter_subset_right _ _ },
232-
have : s = univ, by rwa [interior_eq_of_open open_s, univ_subset_iff] at this,
232+
have : s = univ, by rwa [open_s.interior_eq, univ_subset_iff] at this,
233233
simpa only [this, restr_univ] using hs },
234234
{ exfalso,
235235
rw mem_set_of_eq at hs,
@@ -298,14 +298,14 @@ def pregroupoid.groupoid (PG : pregroupoid H) : structure_groupoid H :=
298298
rcases he x xu with ⟨s, s_open, xs, hs⟩,
299299
refine ⟨s, s_open, xs, _⟩,
300300
convert hs.1,
301-
exact (interior_eq_of_open s_open).symm },
301+
exact s_open.interior_eq.symm },
302302
{ apply PG.locality e.open_target (λx xu, _),
303303
rcases he (e.symm x) (e.map_target xu) with ⟨s, s_open, xs, hs⟩,
304304
refine ⟨e.target ∩ e.symm ⁻¹' s, _, ⟨xu, xs⟩, _⟩,
305305
{ exact continuous_on.preimage_open_of_open e.continuous_inv_fun e.open_target s_open },
306306
{ rw [← inter_assoc, inter_self],
307307
convert hs.2,
308-
exact (interior_eq_of_open s_open).symm } },
308+
exact s_open.interior_eq.symm } },
309309
end,
310310
eq_on_source' := λe e' he ee', begin
311311
split,
@@ -393,7 +393,7 @@ def id_restr_groupoid : structure_groupoid H :=
393393
rcases h x hx with ⟨s, hs, hxs, s', hs', hes'⟩,
394394
have hes : x ∈ (e.restr s).source,
395395
{ rw e.restr_source, refine ⟨hx, _⟩,
396-
rw interior_eq_of_open hs, exact hxs },
396+
rw hs.interior_eq, exact hxs },
397397
simpa only with mfld_simps using local_homeomorph.eq_on_source.eq_on hes' hes,
398398
end,
399399
eq_on_source' := begin
@@ -412,7 +412,7 @@ instance closed_under_restriction_id_restr_groupoid :
412412
rintros e ⟨s', hs', he⟩ s hs,
413413
use [s' ∩ s, is_open_inter hs' hs],
414414
refine setoid.trans (local_homeomorph.eq_on_source.restr he s) _,
415-
exact ⟨by simp only [interior_eq_of_open hs] with mfld_simps, by simp only with mfld_simps⟩,
415+
exact ⟨by simp only [hs.interior_eq] with mfld_simps, by simp only with mfld_simps⟩,
416416
end
417417

418418
/-- A groupoid is closed under restriction if and only if it contains the trivial restriction-closed
@@ -426,7 +426,7 @@ begin
426426
rintros e ⟨s, hs, hes⟩,
427427
refine G.eq_on_source _ hes,
428428
convert closed_under_restriction' G.id_mem hs,
429-
rw interior_eq_of_open hs,
429+
rw hs.interior_eq,
430430
simp only with mfld_simps },
431431
{ intros h,
432432
split,

src/geometry/manifold/local_invariant_properties.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -515,8 +515,8 @@ lemma is_local_structomorph_within_at_local_invariant_prop [closed_under_restric
515515
refine ⟨e.restr (interior u), _, _, _⟩,
516516
{ exact closed_under_restriction' heG (is_open_interior) },
517517
{ have : s ∩ u ∩ e.source = s ∩ (e.source ∩ u) := by mfld_set_tac,
518-
simpa only [this, interior_interior, interior_eq_of_open hu] with mfld_simps using hef },
519-
{ simp only [*, interior_interior, interior_eq_of_open hu] with mfld_simps } }
518+
simpa only [this, interior_interior, hu.interior_eq] with mfld_simps using hef },
519+
{ simp only [*, interior_interior, hu.interior_eq] with mfld_simps } }
520520
end,
521521
right_invariance := begin
522522
intros s x f e' he'G he'x h hx,

src/topology/algebra/ordered.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -248,13 +248,13 @@ lemma is_open_Ioo : is_open (Ioo a b) :=
248248
is_open_inter is_open_Ioi is_open_Iio
249249

250250
@[simp] lemma interior_Ioi : interior (Ioi a) = Ioi a :=
251-
interior_eq_of_open is_open_Ioi
251+
is_open_Ioi.interior_eq
252252

253253
@[simp] lemma interior_Iio : interior (Iio a) = Iio a :=
254-
interior_eq_of_open is_open_Iio
254+
is_open_Iio.interior_eq
255255

256256
@[simp] lemma interior_Ioo : interior (Ioo a b) = Ioo a b :=
257-
interior_eq_of_open is_open_Ioo
257+
is_open_Ioo.interior_eq
258258

259259
/-- Intermediate value theorem for two functions: if `f` and `g` are two continuous functions
260260
on a preconnected space and `f a ≤ g a` and `g b ≤ f b`, then for some `x` we have `f x = g x`. -/

src/topology/basic.lean

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -216,11 +216,11 @@ sUnion_subset $ assume t ⟨h₁, h₂⟩, h₂
216216
lemma interior_maximal {s t : set α} (h₁ : t ⊆ s) (h₂ : is_open t) : t ⊆ interior s :=
217217
subset_sUnion_of_mem ⟨h₂, h₁⟩
218218

219-
lemma interior_eq_of_open {s : set α} (h : is_open s) : interior s = s :=
219+
lemma is_open.interior_eq {s : set α} (h : is_open s) : interior s = s :=
220220
subset.antisymm interior_subset (interior_maximal (subset.refl s) h)
221221

222222
lemma interior_eq_iff_open {s : set α} : interior s = s ↔ is_open s :=
223-
⟨assume h, h ▸ is_open_interior, interior_eq_of_open
223+
⟨assume h, h ▸ is_open_interior, is_open.interior_eq
224224

225225
lemma subset_interior_iff_open {s : set α} : s ⊆ interior s ↔ is_open s :=
226226
by simp only [interior_eq_iff_open.symm, subset.antisymm_iff, interior_subset, true_and]
@@ -233,13 +233,13 @@ lemma interior_mono {s t : set α} (h : s ⊆ t) : interior s ⊆ interior t :=
233233
interior_maximal (subset.trans interior_subset h) is_open_interior
234234

235235
@[simp] lemma interior_empty : interior (∅ : set α) = ∅ :=
236-
interior_eq_of_open is_open_empty
236+
is_open_empty.interior_eq
237237

238238
@[simp] lemma interior_univ : interior (univ : set α) = univ :=
239-
interior_eq_of_open is_open_univ
239+
is_open_univ.interior_eq
240240

241241
@[simp] lemma interior_interior {s : set α} : interior (interior s) = interior s :=
242-
interior_eq_of_open is_open_interior
242+
is_open_interior.interior_eq
243243

244244
@[simp] lemma interior_inter {s t : set α} : interior (s ∩ t) = interior s ∩ interior t :=
245245
subset.antisymm
@@ -405,7 +405,7 @@ lemma is_closed.frontier_eq {s : set α} (hs : is_closed s) : frontier s = s \ i
405405
by rw [frontier, hs.closure_eq]
406406

407407
lemma is_open.frontier_eq {s : set α} (hs : is_open s) : frontier s = closure s \ s :=
408-
by rw [frontier, interior_eq_of_open hs]
408+
by rw [frontier, hs.interior_eq]
409409

410410
/-- The frontier of a set is closed. -/
411411
lemma is_closed_frontier {s : set α} : is_closed (frontier s) :=

src/topology/continuous_on.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -591,7 +591,7 @@ lemma continuous_on.preimage_interior_subset_interior_preimage {f : α → β} {
591591
calc s ∩ f ⁻¹' (interior t) ⊆ interior (s ∩ f ⁻¹' t) :
592592
interior_maximal (inter_subset_inter (subset.refl _) (preimage_mono interior_subset))
593593
(hf.preimage_open_of_open hs is_open_interior)
594-
... = s ∩ interior (f ⁻¹' t) : by rw [interior_inter, interior_eq_of_open hs]
594+
... = s ∩ interior (f ⁻¹' t) : by rw [interior_inter, hs.interior_eq]
595595

596596
lemma continuous_on_of_locally_continuous_on {f : α → β} {s : set α}
597597
(h : ∀x∈s, ∃t, is_open t ∧ x ∈ t ∧ continuous_on f (s ∩ t)) : continuous_on f s :=

src/topology/local_homeomorph.lean

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -201,15 +201,15 @@ begin
201201
exact e.continuous_on_symm.preimage_interior_subset_interior_preimage e.open_target
202202
end
203203
... = e.source ∩ e ⁻¹' (interior (e.target ∩ e.symm ⁻¹' (e ⁻¹' s))) :
204-
by rw [interior_inter, interior_eq_of_open e.open_target]
204+
by rw [interior_inter, e.open_target.interior_eq]
205205
... = e.source ∩ e ⁻¹' (interior (e.target ∩ s)) :
206206
begin
207207
have := e.to_local_equiv.target_inter_inv_preimage_preimage,
208208
simp only [coe_coe_symm, coe_coe] at this,
209209
rw this
210210
end
211211
... = e.source ∩ e ⁻¹' e.target ∩ e ⁻¹' (interior s) :
212-
by rw [interior_inter, preimage_inter, interior_eq_of_open e.open_target, inter_assoc]
212+
by rw [interior_inter, preimage_inter, e.open_target.interior_eq, inter_assoc]
213213
... = e.source ∩ e ⁻¹' (interior s) : by mfld_set_tac }
214214
end
215215

@@ -269,11 +269,11 @@ lemma restr_target (s : set α) :
269269
(e.restr s).target = e.target ∩ e.symm ⁻¹' (interior s) := rfl
270270

271271
lemma restr_source' (s : set α) (hs : is_open s) : (e.restr s).source = e.source ∩ s :=
272-
by rw [e.restr_source, interior_eq_of_open hs]
272+
by rw [e.restr_source, hs.interior_eq]
273273

274274
lemma restr_to_local_equiv' (s : set α) (hs : is_open s):
275275
(e.restr s).to_local_equiv = e.to_local_equiv.restr s :=
276-
by rw [e.restr_to_local_equiv, interior_eq_of_open hs]
276+
by rw [e.restr_to_local_equiv, hs.interior_eq]
277277

278278
lemma restr_eq_of_source_subset {e : local_homeomorph α β} {s : set α} (h : e.source ⊆ s) :
279279
e.restr s = e :=
@@ -282,7 +282,7 @@ begin
282282
rw restr_to_local_equiv,
283283
apply local_equiv.restr_eq_of_source_subset,
284284
have := interior_mono h,
285-
rwa interior_eq_of_open (e.open_source) at this
285+
rwa e.open_source.interior_eq at this
286286
end
287287

288288
@[simp, mfld_simps] lemma restr_univ {e : local_homeomorph α β} : e.restr univ = e :=
@@ -291,7 +291,7 @@ restr_eq_of_source_subset (subset_univ _)
291291
lemma restr_source_inter (s : set α) : e.restr (e.source ∩ s) = e.restr s :=
292292
begin
293293
refine local_homeomorph.ext _ _ (λx, rfl) (λx, rfl) _,
294-
simp [interior_eq_of_open e.open_source],
294+
simp [e.open_source.interior_eq],
295295
rw [← inter_assoc, inter_self]
296296
end
297297

@@ -400,7 +400,7 @@ eq_of_local_equiv_eq $ local_equiv.refl_trans e.to_local_equiv
400400
lemma trans_of_set {s : set β} (hs : is_open s) :
401401
e.trans (of_set s hs) = e.restr (e ⁻¹' s) :=
402402
local_homeomorph.ext _ _ (λx, rfl) (λx, rfl) $
403-
by simp [local_equiv.trans_source, (e.preimage_interior _).symm, interior_eq_of_open hs]
403+
by simp [local_equiv.trans_source, (e.preimage_interior _).symm, hs.interior_eq]
404404

405405
lemma trans_of_set' {s : set β} (hs : is_open s) :
406406
e.trans (of_set s hs) = e.restr (e.source ∩ e ⁻¹' s) :=
@@ -409,7 +409,7 @@ by rw [trans_of_set, restr_source_inter]
409409
lemma of_set_trans {s : set α} (hs : is_open s) :
410410
(of_set s hs).trans e = e.restr s :=
411411
local_homeomorph.ext _ _ (λx, rfl) (λx, rfl) $
412-
by simp [local_equiv.trans_source, interior_eq_of_open hs, inter_comm]
412+
by simp [local_equiv.trans_source, hs.interior_eq, inter_comm]
413413

414414
lemma of_set_trans' {s : set α} (hs : is_open s) :
415415
(of_set s hs).trans e = e.restr (e.source ∩ s) :=
@@ -420,7 +420,7 @@ by rw [of_set_trans, restr_source_inter]
420420
(of_set s hs).trans (of_set s' hs') = of_set (s ∩ s') (is_open_inter hs hs') :=
421421
begin
422422
rw (of_set s hs).trans_of_set hs',
423-
ext; simp [interior_eq_of_open hs']
423+
ext; simp [hs'.interior_eq]
424424
end
425425

426426
lemma restr_trans (s : set α) :

src/topology/opens.lean

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -77,9 +77,7 @@ complete_lattice.copy
7777
begin
7878
funext,
7979
apply subtype.ext_iff_val.mpr,
80-
symmetry,
81-
apply interior_eq_of_open,
82-
exact (is_open_inter U.2 V.2),
80+
exact (is_open_inter U.2 V.2).interior_eq.symm,
8381
end
8482
/- Sup -/ (λ Us, ⟨⋃₀ (coe '' Us), is_open_sUnion $ λ U hU,
8583
by { rcases hU with ⟨⟨V, hV⟩, h, h'⟩, dsimp at h', subst h', exact hV}⟩)

src/topology/subset_properties.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -577,7 +577,7 @@ lemma exists_compact_subset [locally_compact_space α] {x : α} {U : set α}
577577
begin
578578
rcases locally_compact_space.local_compact_nhds x U _ with ⟨K, h1K, h2K, h3K⟩,
579579
{ refine ⟨K, h3K, _, h2K⟩, rwa [ mem_interior_iff_mem_nhds] },
580-
rwa [← mem_interior_iff_mem_nhds, interior_eq_of_open hU]
580+
rwa [← mem_interior_iff_mem_nhds, hU.interior_eq]
581581
end
582582

583583
end compact

0 commit comments

Comments
 (0)