@@ -815,6 +815,10 @@ protected lemma continuous_linear_map.summable {f : ι → M} (φ : M →L[R] M
815
815
816
816
alias continuous_linear_map.summable ← summable.mapL
817
817
818
+ protected lemma continuous_linear_map.map_tsum [t2_space M₂] {f : ι → M}
819
+ (φ : M →L[R] M₂) (hf : summable f) : φ (∑' z, f z) = ∑' z, φ (f z) :=
820
+ (hf.has_sum.mapL φ).tsum_eq.symm
821
+
818
822
/-- Applying a continuous linear map commutes with taking an (infinite) sum. -/
819
823
protected lemma continuous_linear_equiv.has_sum {f : ι → M} (e : M ≃L[R] M₂) {y : M₂} :
820
824
has_sum (λ (b:ι), e (f b)) y ↔ has_sum f (e.symm y) :=
@@ -825,6 +829,21 @@ protected lemma continuous_linear_equiv.summable {f : ι → M} (e : M ≃L[R] M
825
829
summable (λ b:ι, e (f b)) ↔ summable f :=
826
830
⟨λ hf, (e.has_sum.1 hf.has_sum).summable, (e : M →L[R] M₂).summable⟩
827
831
832
+ lemma continuous_linear_equiv.tsum_eq_iff [t2_space M] [t2_space M₂] {f : ι → M}
833
+ (e : M ≃L[R] M₂) {y : M₂} : (∑' z, e (f z)) = y ↔ (∑' z, f z) = e.symm y :=
834
+ begin
835
+ by_cases hf : summable f,
836
+ { exact ⟨λ h, (e.has_sum.mp ((e.summable.mpr hf).has_sum_iff.mpr h)).tsum_eq,
837
+ λ h, (e.has_sum.mpr (hf.has_sum_iff.mpr h)).tsum_eq⟩ },
838
+ { have hf' : ¬summable (λ z, e (f z)) := λ h, hf (e.summable.mp h),
839
+ rw [tsum_eq_zero_of_not_summable hf, tsum_eq_zero_of_not_summable hf'],
840
+ exact ⟨by { rintro rfl, simp }, λ H, by simpa using (congr_arg (λ z, e z) H)⟩ }
841
+ end
842
+
843
+ protected lemma continuous_linear_equiv.map_tsum [t2_space M] [t2_space M₂] {f : ι → M}
844
+ (e : M ≃L[R] M₂) : e (∑' z, f z) = ∑' z, e (f z) :=
845
+ by { refine symm (e.tsum_eq_iff.mpr _), rw e.symm_apply_apply _ }
846
+
828
847
end has_sum
829
848
830
849
namespace continuous_linear_equiv
0 commit comments