@@ -35,18 +35,6 @@ iff.rfl
35
35
@[simp] lemma mem_orbit_self (b : β) : b ∈ orbit α b :=
36
36
⟨1 , by simp [mul_action.one_smul]⟩
37
37
38
- variable (α)
39
-
40
- /-- The stabilizer of an element under an action, i.e. what sends the element to itself. Note
41
- that this is a set: for the group stabilizer see `stabilizer`. -/
42
- def stabilizer_carrier (b : β) : set α :=
43
- {x : α | x • b = b}
44
-
45
- variable {α}
46
-
47
- @[simp] lemma mem_stabilizer_iff {b : β} {x : α} :
48
- x ∈ stabilizer_carrier α b ↔ x • b = b := iff.rfl
49
-
50
38
variables (α) (β)
51
39
52
40
/-- The set of elements fixed under the whole action. -/
@@ -70,16 +58,19 @@ variables {α} (β)
70
58
lemma mem_fixed_points' {b : β} : b ∈ fixed_points α β ↔
71
59
(∀ b', b' ∈ orbit α b → b' = b) :=
72
60
⟨λ h b h₁, let ⟨x, hx⟩ := mem_orbit_iff.1 h₁ in hx ▸ h x,
73
- λ h b, mem_stabilizer_iff. 2 ( h _ (mem_orbit _ _) )⟩
61
+ λ h b, h _ (mem_orbit _ _)⟩
74
62
75
63
variables (α) {β}
76
64
77
65
/-- The stabilizer of a point `b` as a submonoid of `α`. -/
78
66
def stabilizer.submonoid (b : β) : submonoid α :=
79
- { carrier := stabilizer_carrier α b ,
67
+ { carrier := { a | a • b = b } ,
80
68
one_mem' := one_smul _ b,
81
69
mul_mem' := λ a a' (ha : a • b = b) (hb : a' • b = b),
82
- by rw [mem_stabilizer_iff, ←smul_smul, hb, ha] }
70
+ show (a * a') • b = b, by rw [←smul_smul, hb, ha] }
71
+
72
+ @[simp] lemma mem_stabilizer_submonoid_iff {b : β} {a : α} :
73
+ a ∈ stabilizer.submonoid α b ↔ a • b = b := iff.rfl
83
74
84
75
end mul_action
85
76
@@ -95,6 +86,9 @@ def stabilizer (b : β) : subgroup α :=
95
86
96
87
variables {α} {β}
97
88
89
+ @[simp] lemma mem_stabilizer_iff {b : β} {a : α} :
90
+ a ∈ stabilizer α b ↔ a • b = b := iff.rfl
91
+
98
92
lemma orbit_eq_iff {a b : β} :
99
93
orbit α a = orbit α b ↔ a ∈ orbit α b:=
100
94
⟨λ h, h ▸ mem_orbit_self _,
@@ -107,14 +101,6 @@ lemma orbit_eq_iff {a b : β} :
107
101
108
102
variables (α) {β}
109
103
110
- /-- The stabilizer of a point `b` as a subgroup of `α`. -/
111
- def stabilizer.subgroup (b : β) : subgroup α :=
112
- { inv_mem' := λ x (hx : x • b = b), show x⁻¹ • b = b,
113
- by rw [← hx, ← mul_action.mul_smul, inv_mul_self, mul_action.one_smul, hx],
114
- ..stabilizer.submonoid α b }
115
-
116
- variables {β}
117
-
118
104
@[simp] lemma mem_orbit_smul (g : α) (a : β) : a ∈ orbit α (g • a) :=
119
105
⟨g⁻¹, by simp⟩
120
106
@@ -130,7 +116,7 @@ def orbit_rel : setoid β :=
130
116
131
117
variables {α β}
132
118
133
- open quotient_group mul_action
119
+ open quotient_group
134
120
135
121
/-- Action on left cosets. -/
136
122
def mul_left_cosets (H : subgroup α)
@@ -149,7 +135,7 @@ instance quotient (H : subgroup α) : mul_action α (quotient H) :=
149
135
@[simp] lemma quotient.smul_mk (H : subgroup α) (a x : α) :
150
136
(a • quotient_group.mk x : quotient_group.quotient H) = quotient_group.mk (a * x) := rfl
151
137
152
- @[simp] lemma quotient.smul_coe {α : Type *} [comm_group α] (H : subgroup α) (a x : α) :
138
+ @[simp] lemma quotient.smul_coe (H : subgroup α) (a x : α) :
153
139
(a • x : quotient_group.quotient H) = ↑(a * x) := rfl
154
140
155
141
instance mul_left_cosets_comp_subtype_val (H I : subgroup α) :
0 commit comments