@@ -11,6 +11,9 @@ import linear_algebra.linear_independent
11
11
import tactic.linarith
12
12
import algebra.algebra.basic
13
13
import ring_theory.noetherian
14
+ import ring_theory.jacobson_ideal
15
+ import ring_theory.nilpotent
16
+ import ring_theory.nakayama
14
17
15
18
/-!
16
19
# Artinian rings and modules
@@ -192,13 +195,21 @@ theorem set_has_minimal_iff_artinian :
192
195
is_artinian R M :=
193
196
by rw [is_artinian_iff_well_founded, well_founded.well_founded_iff_has_min']
194
197
195
- /-- A module is Noetherian iff every decreasing chain of submodules stabilizes. -/
198
+ theorem is_artinian.set_has_minimal [is_artinian R M] (a : set $ submodule R M) (ha : a.nonempty) :
199
+ ∃ M' ∈ a, ∀ I ∈ a, I ≤ M' → I = M' :=
200
+ set_has_minimal_iff_artinian.mpr ‹_› a ha
201
+
202
+ /-- A module is Artinian iff every decreasing chain of submodules stabilizes. -/
196
203
theorem monotone_stabilizes_iff_artinian :
197
204
(∀ (f : ℕ →ₘ order_dual (submodule R M)), ∃ n, ∀ m, n ≤ m → f n = f m)
198
205
↔ is_artinian R M :=
199
206
by rw [is_artinian_iff_well_founded];
200
207
exact (well_founded.monotone_chain_condition (order_dual (submodule R M))).symm
201
208
209
+ theorem is_artinian.monotone_stabilizes [is_artinian R M] (f : ℕ →ₘ order_dual (submodule R M)) :
210
+ ∃ n, ∀ m, n ≤ m → f n = f m :=
211
+ monotone_stabilizes_iff_artinian.mpr ‹_› f
212
+
202
213
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/
203
214
lemma is_artinian.induction [is_artinian R M] {P : submodule R M → Prop }
204
215
(hgt : ∀ I, (∀ J < I, P J) → P I) (I : submodule R M) : P I :=
@@ -378,3 +389,47 @@ is_artinian_ring_of_surjective R f.range f.range_restrict
378
389
theorem is_artinian_ring_of_ring_equiv (R) [comm_ring R] {S} [comm_ring S]
379
390
(f : R ≃+* S) [is_artinian_ring R] : is_artinian_ring S :=
380
391
is_artinian_ring_of_surjective R S f.to_ring_hom f.to_equiv.surjective
392
+
393
+ namespace is_artinian_ring
394
+
395
+ open is_artinian
396
+
397
+ variables {R : Type *} [comm_ring R] [is_artinian_ring R]
398
+
399
+ lemma is_nilpotent_jacobson_bot : is_nilpotent (ideal.jacobson (⊥ : ideal R)) :=
400
+ begin
401
+ let Jac := ideal.jacobson (⊥ : ideal R),
402
+ let f : ℕ →ₘ order_dual (ideal R) := ⟨λ n, Jac ^ n, λ _ _ h, ideal.pow_le_pow h⟩,
403
+ obtain ⟨n, hn⟩ : ∃ n, ∀ m, n ≤ m → Jac ^ n = Jac ^ m := is_artinian.monotone_stabilizes f,
404
+ refine ⟨n, _⟩,
405
+ let J : ideal R := annihilator (Jac ^ n),
406
+ suffices : J = ⊤,
407
+ { have hJ : J • Jac ^ n = ⊥ := annihilator_smul (Jac ^ n),
408
+ simpa only [this , top_smul, ideal.zero_eq_bot] using hJ },
409
+ by_contradiction hJ, change J ≠ ⊤ at hJ,
410
+ rcases is_artinian.set_has_minimal {J' : ideal R | J < J'} ⟨⊤, hJ.lt_top⟩
411
+ with ⟨J', hJJ' : J < J', hJ' : ∀ I, J < I → I ≤ J' → I = J'⟩,
412
+ rcases set_like.exists_of_lt hJJ' with ⟨x, hxJ', hxJ⟩,
413
+ obtain rfl : J ⊔ ideal.span {x} = J',
414
+ { refine hJ' (J ⊔ ideal.span {x}) _ _,
415
+ { rw set_like.lt_iff_le_and_exists,
416
+ exact ⟨le_sup_left, ⟨x, mem_sup_right (mem_span_singleton_self x), hxJ⟩⟩ },
417
+ { exact (sup_le hJJ'.le (span_le.2 (singleton_subset_iff.2 hxJ'))) } },
418
+ have : J ⊔ Jac • ideal.span {x} ≤ J ⊔ ideal.span {x},
419
+ from sup_le_sup_left (smul_le.2 (λ _ _ _, submodule.smul_mem _ _)) _,
420
+ have : Jac * ideal.span {x} ≤ J, -- Need version 4 of Nakayamas lemma on Stacks
421
+ { classical, by_contradiction H,
422
+ refine H (smul_sup_le_of_le_smul_of_le_jacobson_bot
423
+ (fg_span_singleton _) le_rfl (hJ' _ _ this ).ge),
424
+ exact lt_of_le_of_ne le_sup_left (λ h, H $ h.symm ▸ le_sup_right) },
425
+ have : ideal.span {x} * Jac ^ (n + 1 ) ≤ ⊥,
426
+ calc ideal.span {x} * Jac ^ (n + 1 ) = ideal.span {x} * Jac * Jac ^ n :
427
+ by rw [pow_succ, ← mul_assoc]
428
+ ... ≤ J * Jac ^ n : mul_le_mul (by rwa mul_comm) (le_refl _)
429
+ ... = ⊥ : by simp [J],
430
+ refine hxJ (mem_annihilator.2 (λ y hy, (mem_bot R).1 _)),
431
+ refine this (mul_mem_mul (mem_span_singleton_self x) _),
432
+ rwa [← hn (n + 1 ) (nat.le_succ _)]
433
+ end
434
+
435
+ end is_artinian_ring
0 commit comments