Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit bd56531

Browse files
committed
chore(analysis/normed_space/operator_norm): use norm_one_class (#8346)
* turn `continuous_linear_map.norm_id` into a `simp` lemma; * drop its particular case `continuous_linear_map.norm_id_field`; * replace `continuous_linear_map.norm_id_field'` with a `norm_one_class` instance.
1 parent 93a3764 commit bd56531

File tree

2 files changed

+4
-8
lines changed

2 files changed

+4
-8
lines changed

src/analysis/calculus/parametric_integral.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -225,7 +225,7 @@ begin
225225
h_diff with hF'_int key,
226226
replace hF'_int : integrable F' μ,
227227
{ rw [← integrable_norm_iff hm] at hF'_int,
228-
simpa only [integrable_norm_iff, hF'_meas, one_mul, continuous_linear_map.norm_id_field',
228+
simpa only [integrable_norm_iff, hF'_meas, one_mul, norm_one,
229229
continuous_linear_map.norm_smul_rightL_apply] using hF'_int},
230230
refine ⟨hF'_int, _⟩,
231231
simp_rw has_deriv_at_iff_has_fderiv_at at h_diff ⊢,

src/analysis/normed_space/operator_norm.lean

Lines changed: 3 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -319,7 +319,7 @@ op_norm_le_bound _ zero_le_one (λx, by simp)
319319

320320
/-- If there is an element with norm different from `0`, then the norm of the identity equals `1`.
321321
(Since we are working with seminorms supposing that the space is non-trivial is not enough.) -/
322-
lemma norm_id_of_nontrivial_seminorm (h : ∃ (x : E), ∥x∥ ≠ 0 ) : ∥id 𝕜 E∥ = 1 :=
322+
lemma norm_id_of_nontrivial_seminorm (h : ∃ (x : E), ∥x∥ ≠ 0) : ∥id 𝕜 E∥ = 1 :=
323323
le_antisymm norm_id_le $ let ⟨x, hx⟩ := h in
324324
have _ := (id 𝕜 E).ratio_le_op_norm x,
325325
by rwa [id_apply, div_self hx] at this
@@ -901,18 +901,14 @@ iff.intro
901901
(op_norm_nonneg _))
902902

903903
/-- If a normed space is non-trivial, then the norm of the identity equals `1`. -/
904-
lemma norm_id [nontrivial E] : ∥id 𝕜 E∥ = 1 :=
904+
@[simp] lemma norm_id [nontrivial E] : ∥id 𝕜 E∥ = 1 :=
905905
begin
906906
refine norm_id_of_nontrivial_seminorm _,
907907
obtain ⟨x, hx⟩ := exists_ne (0 : E),
908908
exact ⟨x, ne_of_gt (norm_pos_iff.2 hx)⟩,
909909
end
910910

911-
@[simp] lemma norm_id_field : ∥id 𝕜 𝕜∥ = 1 :=
912-
norm_id
913-
914-
@[simp] lemma norm_id_field' : ∥(1 : 𝕜 →L[𝕜] 𝕜)∥ = 1 :=
915-
norm_id_field
911+
instance norm_one_class [nontrivial E] : norm_one_class (E →L[𝕜] E) := ⟨norm_id⟩
916912

917913
/-- Continuous linear maps themselves form a normed space with respect to
918914
the operator norm. -/

0 commit comments

Comments
 (0)