Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit be17b92

Browse files
committed
feat(topology/metric_space/lipschitz): image of a bdd set (#11134)
Prove that `f '' s` is bounded provided that `f` is Lipschitz continuous and `s` is bounded.
1 parent 5bfd924 commit be17b92

File tree

1 file changed

+8
-7
lines changed

1 file changed

+8
-7
lines changed

src/topology/metric_space/lipschitz.lean

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -279,15 +279,16 @@ lemma nndist_le {f : α → β} (hf : lipschitz_with K f) (x y : α) :
279279
nndist (f x) (f y) ≤ K * nndist x y :=
280280
hf.dist_le_mul x y
281281

282+
lemma bounded_image {f : α → β} (hf : lipschitz_with K f) {s : set α} (hs : metric.bounded s) :
283+
metric.bounded (f '' s) :=
284+
metric.bounded_iff_ediam_ne_top.2 $ ne_top_of_le_ne_top
285+
(ennreal.mul_ne_top ennreal.coe_ne_top hs.ediam_ne_top) (hf.ediam_image_le s)
286+
282287
lemma diam_image_le {f : α → β} (hf : lipschitz_with K f) (s : set α) (hs : metric.bounded s) :
283288
metric.diam (f '' s) ≤ K * metric.diam s :=
284-
begin
285-
apply metric.diam_le_of_forall_dist_le (mul_nonneg K.coe_nonneg metric.diam_nonneg),
286-
rintros _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩,
287-
calc dist (f x) (f y) ≤ ↑K * dist x y : hf.dist_le_mul x y
288-
... ≤ ↑K * metric.diam s :
289-
mul_le_mul_of_nonneg_left (metric.dist_le_diam_of_mem hs hx hy) K.2
290-
end
289+
by simpa only [ennreal.to_real_mul, ennreal.coe_to_real]
290+
using (ennreal.to_real_le_to_real (hf.bounded_image hs).ediam_ne_top
291+
(ennreal.mul_ne_top ennreal.coe_ne_top hs.ediam_ne_top)).2 (hf.ediam_image_le s)
291292

292293
protected lemma dist_left (y : α) : lipschitz_with 1 (λ x, dist x y) :=
293294
lipschitz_with.of_le_add $ assume x z, by { rw [add_comm], apply dist_triangle }

0 commit comments

Comments
 (0)