This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 2 files changed +9
-8
lines changed Expand file tree Collapse file tree 2 files changed +9
-8
lines changed Original file line number Diff line number Diff line change @@ -723,9 +723,15 @@ instance to_algebra {R : Type u} {A : Type v} [comm_semiring R] [comm_semiring A
723
723
[algebra R A] (S : subalgebra R A) : algebra S A :=
724
724
algebra.of_subsemiring _
725
725
726
+ -- todo: standardize on the names these morphisms
727
+ -- compare with submodule.subtype
728
+
726
729
/-- Embedding of a subalgebra into the algebra. -/
727
730
def val : S →ₐ[R] A :=
728
- by refine_struct { to_fun := subtype.val }; intros; refl
731
+ by refine_struct { to_fun := (coe : S → A) }; intros; refl
732
+
733
+ @[simp]
734
+ lemma val_apply (x : S) : S.val x = (x : A) := rfl
729
735
730
736
/-- Convert a `subalgebra` to `submodule` -/
731
737
def to_submodule : submodule R A :=
Original file line number Diff line number Diff line change @@ -42,7 +42,7 @@ variables {R A}
42
42
43
43
/-- A subalgebra is algebraic if and only if it is algebraic an algebra. -/
44
44
lemma subalgebra.is_algebraic_iff (S : subalgebra R A) :
45
- S.is_algebraic ↔ @algebra.is_algebraic R S _ _ (by convert S.algebra) :=
45
+ S.is_algebraic ↔ @algebra.is_algebraic R S _ _ (S.algebra) :=
46
46
begin
47
47
delta algebra.is_algebraic subalgebra.is_algebraic,
48
48
rw [subtype.forall'],
51
51
apply and_congr iff.rfl,
52
52
have h : function.injective (S.val) := subtype.val_injective,
53
53
conv_rhs { rw [← h.eq_iff, alg_hom.map_zero], },
54
- apply eq_iff_eq_cancel_right.mpr,
55
- symmetry,
56
- -- TODO: add an `aeval`-specific version of `hom_eval₂`
57
- simp only [aeval_def],
58
- convert hom_eval₂ p (algebra_map R S) ↑S.val ⟨x, hx⟩,
59
- refl
54
+ rw [← aeval_alg_hom_apply, S.val_apply, subtype.val_eq_coe],
60
55
end
61
56
62
57
/-- An algebra is algebraic if and only if it is algebraic as a subalgebra. -/
You can’t perform that action at this time.
0 commit comments