@@ -19,6 +19,10 @@ variables {α R : Type*}
19
19
20
20
open filter set
21
21
22
+ @[simp] lemma nat.comap_coe_at_top [ordered_semiring R] [nontrivial R] [archimedean R] :
23
+ comap (coe : ℕ → R) at_top = at_top :=
24
+ comap_embedding_at_top (λ _ _, nat.cast_le) exists_nat_ge
25
+
22
26
lemma tendsto_coe_nat_at_top_iff [ordered_semiring R] [nontrivial R] [archimedean R]
23
27
{f : α → ℕ} {l : filter α} :
24
28
tendsto (λ n, (f n : R)) l at_top ↔ tendsto f l at_top :=
@@ -28,22 +32,48 @@ lemma tendsto_coe_nat_at_top_at_top [ordered_semiring R] [archimedean R] :
28
32
tendsto (coe : ℕ → R) at_top at_top :=
29
33
nat.mono_cast.tendsto_at_top_at_top exists_nat_ge
30
34
35
+ @[simp] lemma int.comap_coe_at_top [ordered_ring R] [nontrivial R] [archimedean R] :
36
+ comap (coe : ℤ → R) at_top = at_top :=
37
+ comap_embedding_at_top (λ _ _, int.cast_le) $ λ r, let ⟨n, hn⟩ := exists_nat_ge r in ⟨n, hn⟩
38
+
39
+ @[simp] lemma int.comap_coe_at_bot [ordered_ring R] [nontrivial R] [archimedean R] :
40
+ comap (coe : ℤ → R) at_bot = at_bot :=
41
+ comap_embedding_at_bot (λ _ _, int.cast_le) $ λ r,
42
+ let ⟨n, hn⟩ := exists_nat_ge (-r) in ⟨-n, by simpa [neg_le] using hn⟩
43
+
31
44
lemma tendsto_coe_int_at_top_iff [ordered_ring R] [nontrivial R] [archimedean R]
32
45
{f : α → ℤ} {l : filter α} :
33
46
tendsto (λ n, (f n : R)) l at_top ↔ tendsto f l at_top :=
34
- tendsto_at_top_embedding (assume a₁ a₂, int.cast_le) $
35
- assume r, let ⟨n, hn⟩ := exists_nat_ge r in ⟨(n:ℤ), hn⟩
47
+ by rw [← tendsto_comap_iff, int.comap_coe_at_top]
48
+
49
+ lemma tendsto_coe_int_at_bot_iff [ordered_ring R] [nontrivial R] [archimedean R]
50
+ {f : α → ℤ} {l : filter α} :
51
+ tendsto (λ n, (f n : R)) l at_bot ↔ tendsto f l at_bot :=
52
+ by rw [← tendsto_comap_iff, int.comap_coe_at_bot]
36
53
37
54
lemma tendsto_coe_int_at_top_at_top [ordered_ring R] [archimedean R] :
38
55
tendsto (coe : ℤ → R) at_top at_top :=
39
56
int.cast_mono.tendsto_at_top_at_top $ λ b,
40
57
let ⟨n, hn⟩ := exists_nat_ge b in ⟨n, hn⟩
41
58
59
+ @[simp] lemma rat.comap_coe_at_top [linear_ordered_field R] [archimedean R] :
60
+ comap (coe : ℚ → R) at_top = at_top :=
61
+ comap_embedding_at_top (λ _ _, rat.cast_le) $ λ r, let ⟨n, hn⟩ := exists_nat_ge r in ⟨n, by simpa⟩
62
+
63
+ @[simp] lemma rat.comap_coe_at_bot [linear_ordered_field R] [archimedean R] :
64
+ comap (coe : ℚ → R) at_bot = at_bot :=
65
+ comap_embedding_at_bot (λ _ _, rat.cast_le) $ λ r, let ⟨n, hn⟩ := exists_nat_ge (-r)
66
+ in ⟨-n, by simpa [neg_le]⟩
67
+
42
68
lemma tendsto_coe_rat_at_top_iff [linear_ordered_field R] [archimedean R]
43
69
{f : α → ℚ} {l : filter α} :
44
70
tendsto (λ n, (f n : R)) l at_top ↔ tendsto f l at_top :=
45
- tendsto_at_top_embedding (assume a₁ a₂, rat.cast_le) $
46
- assume r, let ⟨n, hn⟩ := exists_nat_ge r in ⟨(n:ℚ), by assumption_mod_cast⟩
71
+ by rw [← tendsto_comap_iff, rat.comap_coe_at_top]
72
+
73
+ lemma tendsto_coe_rat_at_bot_iff [linear_ordered_field R] [archimedean R]
74
+ {f : α → ℚ} {l : filter α} :
75
+ tendsto (λ n, (f n : R)) l at_bot ↔ tendsto f l at_bot :=
76
+ by rw [← tendsto_comap_iff, rat.comap_coe_at_bot]
47
77
48
78
lemma at_top_countable_basis_of_archimedean [linear_ordered_semiring R] [archimedean R] :
49
79
(at_top : filter R).has_countable_basis (λ n : ℕ, true) (λ n, Ici n) :=
0 commit comments