This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 2 files changed +13
-3
lines changed Expand file tree Collapse file tree 2 files changed +13
-3
lines changed Original file line number Diff line number Diff line change @@ -1521,20 +1521,25 @@ end subtype_equiv_codomain
1521
1521
1522
1522
/-- If `f` is a bijective function, then its domain is equivalent to its codomain. -/
1523
1523
@[simps apply]
1524
- noncomputable def of_bijective {α β} (f : α → β) (hf : bijective f) : α ≃ β :=
1524
+ noncomputable def of_bijective (f : α → β) (hf : bijective f) : α ≃ β :=
1525
1525
{ to_fun := f,
1526
1526
inv_fun := function.surj_inv hf.surjective,
1527
1527
left_inv := function.left_inverse_surj_inv hf,
1528
1528
right_inv := function.right_inverse_surj_inv _}
1529
1529
1530
- lemma of_bijective_apply_symm_apply {α β} (f : α → β) (hf : bijective f) (x : β) :
1530
+ lemma of_bijective_apply_symm_apply (f : α → β) (hf : bijective f) (x : β) :
1531
1531
f ((of_bijective f hf).symm x) = x :=
1532
1532
(of_bijective f hf).apply_symm_apply x
1533
1533
1534
- @[simp] lemma of_bijective_symm_apply_apply {α β} (f : α → β) (hf : bijective f) (x : α) :
1534
+ @[simp] lemma of_bijective_symm_apply_apply (f : α → β) (hf : bijective f) (x : α) :
1535
1535
(of_bijective f hf).symm (f x) = x :=
1536
1536
(of_bijective f hf).symm_apply_apply x
1537
1537
1538
+ instance : can_lift (α → β) (α ≃ β) :=
1539
+ { coe := coe_fn,
1540
+ cond := bijective,
1541
+ prf := λ f hf, ⟨of_bijective f hf, rfl⟩ }
1542
+
1538
1543
section
1539
1544
1540
1545
variables {α' β' : Type *} (e : perm α') {p : β' → Prop } [decidable_pred p]
Original file line number Diff line number Diff line change @@ -34,6 +34,11 @@ instance {α : Sort u} {β : Sort v} : embedding_like (α ↪ β) α β :=
34
34
injective' := embedding.inj',
35
35
coe_injective' := λ f g h, by { cases f, cases g, congr' } }
36
36
37
+ instance {α β : Sort *} : can_lift (α → β) (α ↪ β) :=
38
+ { coe := coe_fn,
39
+ cond := injective,
40
+ prf := λ f hf, ⟨⟨f, hf⟩, rfl⟩ }
41
+
37
42
end function
38
43
39
44
section equiv
You can’t perform that action at this time.
0 commit comments