@@ -19,9 +19,13 @@ def directed (f : ι → α) := ∀x y, ∃z, f x ≼ f z ∧ f y ≼ f z
19
19
pair of elements in the set. -/
20
20
def directed_on (s : set α) := ∀ (x ∈ s) (y ∈ s), ∃z ∈ s, x ≼ z ∧ y ≼ z
21
21
22
+ variables {r}
23
+
22
24
theorem directed_on_iff_directed {s} : @directed_on α r s ↔ directed r (coe : s → α) :=
23
25
by simp [directed, directed_on]; refine ball_congr (λ x hx, by simp; refl)
24
26
27
+ alias directed_on_iff_directed ↔ directed_on.directed_coe _
28
+
25
29
theorem directed_on_image {s} {f : β → α} :
26
30
directed_on r (f '' s) ↔ directed_on (f ⁻¹'o r) s :=
27
31
by simp only [directed_on, set.ball_image_iff, set.bex_image_iff, order.preimage]
@@ -31,19 +35,17 @@ theorem directed_on.mono {s : set α} (h : directed_on r s)
31
35
directed_on r' s :=
32
36
λ x hx y hy, let ⟨z, zs, xz, yz⟩ := h x hx y hy in ⟨z, zs, H xz, H yz⟩
33
37
34
- theorem directed_comp {ι} ( f : ι → β) ( g : β → α) :
38
+ theorem directed_comp {ι} { f : ι → β} { g : β → α} :
35
39
directed r (g ∘ f) ↔ directed (g ⁻¹'o r) f := iff.rfl
36
40
37
- variable {r}
38
-
39
41
theorem directed.mono {s : α → α → Prop } {ι} {f : ι → α}
40
42
(H : ∀ a b, r a b → s a b) (h : directed r f) : directed s f :=
41
43
λ a b, let ⟨c, h₁, h₂⟩ := h a b in ⟨c, H _ _ h₁, H _ _ h₂⟩
42
44
43
45
theorem directed.mono_comp {ι} {rb : β → β → Prop } {g : α → β} {f : ι → α}
44
46
(hg : ∀ ⦃x y⦄, x ≼ y → rb (g x) (g y)) (hf : directed r f) :
45
47
directed rb (g ∘ f) :=
46
- ( directed_comp rb f g) .2 $ hf.mono hg
48
+ directed_comp.2 $ hf.mono hg
47
49
48
50
/-- A monotone function on a sup-semilattice is directed. -/
49
51
lemma directed_of_sup [semilattice_sup α] {f : α → β} {r : β → β → Prop }
0 commit comments