Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit c1f3f1a

Browse files
committed
feat(analysis/complex/basic): determinant of conj_lie (#11389)
Add lemmas giving the determinant of `conj_lie`, as a linear map and as a linear equiv, deduced from the corresponding lemmas for `conj_ae` which is used to define `conj_lie`. This completes the basic lemmas about determinants of linear isometries of `ℂ` (which can thus be used to talk about how those isometries affect orientations), since we also have `linear_isometry_complex` describing all such isometries in terms of `rotation` and `conj_lie`.
1 parent 72c86c3 commit c1f3f1a

File tree

1 file changed

+9
-1
lines changed

1 file changed

+9
-1
lines changed

src/analysis/complex/basic.lean

Lines changed: 9 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@ Copyright (c) Sébastien Gouëzel. All rights reserved.
33
Released under Apache 2.0 license as described in the file LICENSE.
44
Authors: Sébastien Gouëzel
55
-/
6-
import data.complex.module
6+
import data.complex.determinant
77
import data.complex.is_R_or_C
88

99
/-!
@@ -142,6 +142,14 @@ def conj_lie : ℂ ≃ₗᵢ[ℝ] ℂ := ⟨conj_ae.to_linear_equiv, abs_conj⟩
142142

143143
lemma isometry_conj : isometry (conj : ℂ → ℂ) := conj_lie.isometry
144144

145+
/-- The determinant of `conj_lie`, as a linear map. -/
146+
@[simp] lemma det_conj_lie : (conj_lie.to_linear_equiv : ℂ →ₗ[ℝ] ℂ).det = -1 :=
147+
det_conj_ae
148+
149+
/-- The determinant of `conj_lie`, as a linear equiv. -/
150+
@[simp] lemma linear_equiv_det_conj_lie : conj_lie.to_linear_equiv.det = -1 :=
151+
linear_equiv_det_conj_ae
152+
145153
@[continuity] lemma continuous_conj : continuous (conj : ℂ → ℂ) := conj_lie.continuous
146154

147155
/-- Continuous linear equiv version of the conj function, from `ℂ` to `ℂ`. -/

0 commit comments

Comments
 (0)