Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit c247622

Browse files
committed
feat(group_theory/group_action/units): simp lemma for scalar action of is_unit.unit h (#14006)
1 parent 9134a8e commit c247622

File tree

3 files changed

+12
-5
lines changed

3 files changed

+12
-5
lines changed

src/algebra/group_with_zero/basic.lean

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,7 @@ import algebra.group.inj_surj
77
import algebra.group_with_zero.defs
88
import algebra.hom.units
99
import logic.nontrivial
10+
import group_theory.group_action.units
1011

1112
/-!
1213
# Groups with an adjoined zero element
@@ -722,6 +723,10 @@ begin
722723
simpa only [eq_comm] using units.exists_iff_ne_zero.mpr h }
723724
end
724725

726+
@[simp] lemma smul_mk0 {α : Type*} [has_scalar G₀ α] {g : G₀} (hg : g ≠ 0) (a : α) :
727+
(mk0 g hg) • a = g • a :=
728+
rfl
729+
725730
end units
726731

727732
section group_with_zero

src/group_theory/group_action/units.lean

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -32,6 +32,10 @@ instance [monoid M] [has_scalar M α] : has_scalar Mˣ α :=
3232
lemma smul_def [monoid M] [has_scalar M α] (m : Mˣ) (a : α) :
3333
m • a = (m : M) • a := rfl
3434

35+
@[simp] lemma smul_is_unit [monoid M] [has_scalar M α] {m : M} (hm : is_unit m) (a : α) :
36+
hm.unit • a = m • a :=
37+
rfl
38+
3539
lemma _root_.is_unit.inv_smul [monoid α] {a : α} (h : is_unit a) :
3640
(h.unit)⁻¹ • a = 1 :=
3741
h.coe_inv_mul

src/ring_theory/witt_vector/isocrystal.lean

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -192,11 +192,9 @@ begin
192192
intros c,
193193
rw [linear_equiv.trans_apply, linear_equiv.trans_apply,
194194
linear_equiv.smul_of_ne_zero_apply, linear_equiv.smul_of_ne_zero_apply,
195-
show F (units.mk0 b hb • Φ(p,k) c) = _, from linear_equiv.map_smul _ _ _,
196-
show F (units.mk0 b hb • c) = _, from linear_equiv.map_smul _ _ _],
197-
simp only [hax, units.coe_mk0, linear_equiv.of_bijective_apply,
198-
linear_map.to_span_singleton_apply, linear_equiv.map_smulₛₗ,
199-
standard_one_dim_isocrystal.frobenius_apply, algebra.id.smul_eq_mul],
195+
linear_equiv.map_smul, linear_equiv.map_smul],
196+
simp only [hax, linear_equiv.of_bijective_apply, linear_map.to_span_singleton_apply,
197+
linear_equiv.map_smulₛₗ, standard_one_dim_isocrystal.frobenius_apply, algebra.id.smul_eq_mul],
200198
simp only [←mul_smul],
201199
congr' 1,
202200
linear_combination (hmb, φ(p,k) c),

0 commit comments

Comments
 (0)