@@ -53,11 +53,11 @@ le_antisymm
53
53
54
54
lemma borel_eq_generate_Iio (α)
55
55
[topological_space α] [second_countable_topology α]
56
- [linear_order α] [orderable_topology α] :
56
+ [linear_order α] [order_topology α] :
57
57
borel α = generate_from (range Iio) :=
58
58
begin
59
59
refine le_antisymm _ (generate_from_le _),
60
- { rw borel_eq_generate_from_of_subbasis (orderable_topology .topology_eq_generate_intervals α),
60
+ { rw borel_eq_generate_from_of_subbasis (order_topology .topology_eq_generate_intervals α),
61
61
have H : ∀ a:α, is_measurable (measurable_space.generate_from (range Iio)) (Iio a) :=
62
62
λ a, generate_measurable.basic _ ⟨_, rfl⟩,
63
63
refine generate_from_le _, rintro _ ⟨a, rfl | rfl⟩; [skip, apply H],
86
86
87
87
lemma borel_eq_generate_Ioi (α)
88
88
[topological_space α] [second_countable_topology α]
89
- [linear_order α] [orderable_topology α] :
89
+ [linear_order α] [order_topology α] :
90
90
borel α = generate_from (range (λ a, {x | a < x})) :=
91
91
begin
92
92
refine le_antisymm _ (generate_from_le _),
93
- { rw borel_eq_generate_from_of_subbasis (orderable_topology .topology_eq_generate_intervals α),
93
+ { rw borel_eq_generate_from_of_subbasis (order_topology .topology_eq_generate_intervals α),
94
94
have H : ∀ a:α, is_measurable (measurable_space.generate_from (range (λ a, {x | a < x}))) {x | a < x} :=
95
95
λ a, generate_measurable.basic _ ⟨_, rfl⟩,
96
96
refine generate_from_le _, rintro _ ⟨a, rfl | rfl⟩, {apply H},
@@ -232,25 +232,25 @@ lemma measurable.mul
232
232
measurable_of_continuous2 continuous_mul
233
233
234
234
lemma is_measurable_le {α β}
235
- [topological_space α] [partial_order α] [ordered_topology α] [second_countable_topology α]
235
+ [topological_space α] [partial_order α] [order_closed_topology α] [second_countable_topology α]
236
236
[measurable_space β] {f : β → α} {g : β → α} (hf : measurable f) (hg : measurable g) :
237
237
is_measurable {a | f a ≤ g a} :=
238
238
have is_measurable {p : α × α | p.1 ≤ p.2 },
239
- by rw borel_prod; exact is_measurable_of_is_closed (ordered_topology .is_closed_le' _),
239
+ by rw borel_prod; exact is_measurable_of_is_closed (order_closed_topology .is_closed_le' _),
240
240
show is_measurable {a | (f a, g a).1 ≤ (f a, g a).2 },
241
241
begin
242
242
refine measurable.preimage _ this ,
243
243
exact measurable.prod_mk hf hg
244
244
end
245
245
246
246
lemma measurable.max {α β}
247
- [topological_space α] [decidable_linear_order α] [ordered_topology α] [second_countable_topology α]
247
+ [topological_space α] [decidable_linear_order α] [order_closed_topology α] [second_countable_topology α]
248
248
[measurable_space β] {f : β → α} {g : β → α} (hf : measurable f) (hg : measurable g) :
249
249
measurable (λa, max (f a) (g a)) :=
250
250
measurable.if (is_measurable_le hf hg) hg hf
251
251
252
252
lemma measurable.min {α β}
253
- [topological_space α] [decidable_linear_order α] [ordered_topology α] [second_countable_topology α]
253
+ [topological_space α] [decidable_linear_order α] [order_closed_topology α] [second_countable_topology α]
254
254
[measurable_space β] {f : β → α} {g : β → α} (hf : measurable f) (hg : measurable g) :
255
255
measurable (λa, min (f a) (g a)) :=
256
256
measurable.if (is_measurable_le hf hg) hf hg
@@ -259,8 +259,8 @@ measurable.if (is_measurable_le hf hg) hf hg
259
259
lemma measurable_coe_int_real : measurable (λa, a : ℤ → ℝ) :=
260
260
assume s (hs : is_measurable s), by trivial
261
261
262
- section ordered_topology
263
- variables [linear_order α] [ordered_topology α] {a b c : α}
262
+ section order_closed_topology
263
+ variables [linear_order α] [order_closed_topology α] {a b c : α}
264
264
265
265
lemma is_measurable_Ioo : is_measurable (Ioo a b) := is_measurable_of_is_open is_open_Ioo
266
266
@@ -270,10 +270,10 @@ lemma is_measurable_Ico : is_measurable (Ico a b) :=
270
270
(is_measurable_of_is_closed $ is_closed_le continuous_const continuous_id).inter
271
271
is_measurable_Iio
272
272
273
- end ordered_topology
273
+ end order_closed_topology
274
274
275
275
lemma measurable.is_lub {α} [topological_space α] [linear_order α]
276
- [orderable_topology α] [second_countable_topology α]
276
+ [order_topology α] [second_countable_topology α]
277
277
{β} [measurable_space β] {ι} [encodable ι]
278
278
{f : ι → β → α} {g : β → α} (hf : ∀ i, measurable (f i))
279
279
(hg : ∀ b, is_lub {a | ∃ i, f i b = a} (g b)) :
@@ -291,7 +291,7 @@ begin
291
291
end
292
292
293
293
lemma measurable.is_glb {α} [topological_space α] [linear_order α]
294
- [orderable_topology α] [second_countable_topology α]
294
+ [order_topology α] [second_countable_topology α]
295
295
{β} [measurable_space β] {ι} [encodable ι]
296
296
{f : ι → β → α} {g : β → α} (hf : ∀ i, measurable (f i))
297
297
(hg : ∀ b, is_glb {a | ∃ i, f i b = a} (g b)) :
@@ -309,14 +309,14 @@ begin
309
309
end
310
310
311
311
lemma measurable.supr {α} [topological_space α] [complete_linear_order α]
312
- [orderable_topology α] [second_countable_topology α]
312
+ [order_topology α] [second_countable_topology α]
313
313
{β} [measurable_space β] {ι} [encodable ι]
314
314
{f : ι → β → α} (hf : ∀ i, measurable (f i)) :
315
315
measurable (λ b, ⨆ i, f i b) :=
316
316
measurable.is_lub hf $ λ b, is_lub_supr
317
317
318
318
lemma measurable.infi {α} [topological_space α] [complete_linear_order α]
319
- [orderable_topology α] [second_countable_topology α]
319
+ [order_topology α] [second_countable_topology α]
320
320
{β} [measurable_space β] {ι} [encodable ι]
321
321
{f : ι → β → α} (hf : ∀ i, measurable (f i)) :
322
322
measurable (λ b, ⨅ i, f i b) :=
0 commit comments