@@ -278,17 +278,139 @@ section linear_ordered_field
278
278
279
279
variables {k : Type u} [linear_ordered_field k]
280
280
281
+ @[simp] lemma preimage_mul_const_Iio (a : k) {c : k} (h : 0 < c) :
282
+ (λ x, x * c) ⁻¹' (Iio a) = Iio (a / c) :=
283
+ ext $ λ x, (lt_div_iff h).symm
284
+
285
+ @[simp] lemma preimage_mul_const_Ioi (a : k) {c : k} (h : 0 < c) :
286
+ (λ x, x * c) ⁻¹' (Ioi a) = Ioi (a / c) :=
287
+ ext $ λ x, (div_lt_iff h).symm
288
+
289
+ @[simp] lemma preimage_mul_const_Iic (a : k) {c : k} (h : 0 < c) :
290
+ (λ x, x * c) ⁻¹' (Iic a) = Iic (a / c) :=
291
+ ext $ λ x, (le_div_iff h).symm
292
+
293
+ @[simp] lemma preimage_mul_const_Ici (a : k) {c : k} (h : 0 < c) :
294
+ (λ x, x * c) ⁻¹' (Ici a) = Ici (a / c) :=
295
+ ext $ λ x, (div_le_iff h).symm
296
+
297
+ @[simp] lemma preimage_mul_const_Ioo (a b : k) {c : k} (h : 0 < c) :
298
+ (λ x, x * c) ⁻¹' (Ioo a b) = Ioo (a / c) (b / c) :=
299
+ by simp [← Ioi_inter_Iio, h]
300
+
301
+ @[simp] lemma preimage_mul_const_Ioc (a b : k) {c : k} (h : 0 < c) :
302
+ (λ x, x * c) ⁻¹' (Ioc a b) = Ioc (a / c) (b / c) :=
303
+ by simp [← Ioi_inter_Iic, h]
304
+
305
+ @[simp] lemma preimage_mul_const_Ico (a b : k) {c : k} (h : 0 < c) :
306
+ (λ x, x * c) ⁻¹' (Ico a b) = Ico (a / c) (b / c) :=
307
+ by simp [← Ici_inter_Iio, h]
308
+
309
+ @[simp] lemma preimage_mul_const_Icc (a b : k) {c : k} (h : 0 < c) :
310
+ (λ x, x * c) ⁻¹' (Icc a b) = Icc (a / c) (b / c) :=
311
+ by simp [← Ici_inter_Iic, h]
312
+
313
+ @[simp] lemma preimage_mul_const_Iio_of_neg (a : k) {c : k} (h : c < 0 ) :
314
+ (λ x, x * c) ⁻¹' (Iio a) = Ioi (a / c) :=
315
+ ext $ λ x, (div_lt_iff_of_neg h).symm
316
+
317
+ @[simp] lemma preimage_mul_const_Ioi_of_neg (a : k) {c : k} (h : c < 0 ) :
318
+ (λ x, x * c) ⁻¹' (Ioi a) = Iio (a / c) :=
319
+ ext $ λ x, (lt_div_iff_of_neg h).symm
320
+
321
+ @[simp] lemma preimage_mul_const_Iic_of_neg (a : k) {c : k} (h : c < 0 ) :
322
+ (λ x, x * c) ⁻¹' (Iic a) = Ici (a / c) :=
323
+ ext $ λ x, (div_le_iff_of_neg h).symm
324
+
325
+ @[simp] lemma preimage_mul_const_Ici_of_neg (a : k) {c : k} (h : c < 0 ) :
326
+ (λ x, x * c) ⁻¹' (Ici a) = Iic (a / c) :=
327
+ ext $ λ x, (le_div_iff_of_neg h).symm
328
+
329
+ @[simp] lemma preimage_mul_const_Ioo_of_neg (a b : k) {c : k} (h : c < 0 ) :
330
+ (λ x, x * c) ⁻¹' (Ioo a b) = Ioo (b / c) (a / c) :=
331
+ by simp [← Ioi_inter_Iio, h, inter_comm]
332
+
333
+ @[simp] lemma preimage_mul_const_Ioc_of_neg (a b : k) {c : k} (h : c < 0 ) :
334
+ (λ x, x * c) ⁻¹' (Ioc a b) = Ico (b / c) (a / c) :=
335
+ by simp [← Ioi_inter_Iic, ← Ici_inter_Iio, h, inter_comm]
336
+
337
+ @[simp] lemma preimage_mul_const_Ico_of_neg (a b : k) {c : k} (h : c < 0 ) :
338
+ (λ x, x * c) ⁻¹' (Ico a b) = Ioc (b / c) (a / c) :=
339
+ by simp [← Ici_inter_Iio, ← Ioi_inter_Iic, h, inter_comm]
340
+
341
+ @[simp] lemma preimage_mul_const_Icc_of_neg (a b : k) {c : k} (h : c < 0 ) :
342
+ (λ x, x * c) ⁻¹' (Icc a b) = Icc (b / c) (a / c) :=
343
+ by simp [← Ici_inter_Iic, h, inter_comm]
344
+
345
+ @[simp] lemma preimage_const_mul_Iio (a : k) {c : k} (h : 0 < c) :
346
+ ((*) c) ⁻¹' (Iio a) = Iio (a / c) :=
347
+ ext $ λ x, (lt_div_iff' h).symm
348
+
349
+ @[simp] lemma preimage_const_mul_Ioi (a : k) {c : k} (h : 0 < c) :
350
+ ((*) c) ⁻¹' (Ioi a) = Ioi (a / c) :=
351
+ ext $ λ x, (div_lt_iff' h).symm
352
+
353
+ @[simp] lemma preimage_const_mul_Iic (a : k) {c : k} (h : 0 < c) :
354
+ ((*) c) ⁻¹' (Iic a) = Iic (a / c) :=
355
+ ext $ λ x, (le_div_iff' h).symm
356
+
357
+ @[simp] lemma preimage_const_mul_Ici (a : k) {c : k} (h : 0 < c) :
358
+ ((*) c) ⁻¹' (Ici a) = Ici (a / c) :=
359
+ ext $ λ x, (div_le_iff' h).symm
360
+
361
+ @[simp] lemma preimage_const_mul_Ioo (a b : k) {c : k} (h : 0 < c) :
362
+ ((*) c) ⁻¹' (Ioo a b) = Ioo (a / c) (b / c) :=
363
+ by simp [← Ioi_inter_Iio, h]
364
+
365
+ @[simp] lemma preimage_const_mul_Ioc (a b : k) {c : k} (h : 0 < c) :
366
+ ((*) c) ⁻¹' (Ioc a b) = Ioc (a / c) (b / c) :=
367
+ by simp [← Ioi_inter_Iic, h]
368
+
369
+ @[simp] lemma preimage_const_mul_Ico (a b : k) {c : k} (h : 0 < c) :
370
+ ((*) c) ⁻¹' (Ico a b) = Ico (a / c) (b / c) :=
371
+ by simp [← Ici_inter_Iio, h]
372
+
373
+ @[simp] lemma preimage_const_mul_Icc (a b : k) {c : k} (h : 0 < c) :
374
+ ((*) c) ⁻¹' (Icc a b) = Icc (a / c) (b / c) :=
375
+ by simp [← Ici_inter_Iic, h]
376
+
377
+ @[simp] lemma preimage_const_mul_Iio_of_neg (a : k) {c : k} (h : c < 0 ) :
378
+ ((*) c) ⁻¹' (Iio a) = Ioi (a / c) :=
379
+ by simpa only [mul_comm] using preimage_mul_const_Iio_of_neg a h
380
+
381
+ @[simp] lemma preimage_const_mul_Ioi_of_neg (a : k) {c : k} (h : c < 0 ) :
382
+ ((*) c) ⁻¹' (Ioi a) = Iio (a / c) :=
383
+ by simpa only [mul_comm] using preimage_mul_const_Ioi_of_neg a h
384
+
385
+ @[simp] lemma preimage_const_mul_Iic_of_neg (a : k) {c : k} (h : c < 0 ) :
386
+ ((*) c) ⁻¹' (Iic a) = Ici (a / c) :=
387
+ by simpa only [mul_comm] using preimage_mul_const_Iic_of_neg a h
388
+
389
+ @[simp] lemma preimage_const_mul_Ici_of_neg (a : k) {c : k} (h : c < 0 ) :
390
+ ((*) c) ⁻¹' (Ici a) = Iic (a / c) :=
391
+ by simpa only [mul_comm] using preimage_mul_const_Ici_of_neg a h
392
+
393
+ @[simp] lemma preimage_const_mul_Ioo_of_neg (a b : k) {c : k} (h : c < 0 ) :
394
+ ((*) c) ⁻¹' (Ioo a b) = Ioo (b / c) (a / c) :=
395
+ by simpa only [mul_comm] using preimage_mul_const_Ioo_of_neg a b h
396
+
397
+ @[simp] lemma preimage_const_mul_Ioc_of_neg (a b : k) {c : k} (h : c < 0 ) :
398
+ ((*) c) ⁻¹' (Ioc a b) = Ico (b / c) (a / c) :=
399
+ by simpa only [mul_comm] using preimage_mul_const_Ioc_of_neg a b h
400
+
401
+ @[simp] lemma preimage_const_mul_Ico_of_neg (a b : k) {c : k} (h : c < 0 ) :
402
+ ((*) c) ⁻¹' (Ico a b) = Ioc (b / c) (a / c) :=
403
+ by simpa only [mul_comm] using preimage_mul_const_Ico_of_neg a b h
404
+
405
+ @[simp] lemma preimage_const_mul_Icc_of_neg (a b : k) {c : k} (h : c < 0 ) :
406
+ ((*) c) ⁻¹' (Icc a b) = Icc (b / c) (a / c) :=
407
+ by simpa only [mul_comm] using preimage_mul_const_Icc_of_neg a b h
408
+
281
409
lemma image_mul_right_Icc' (a b : k) {c : k} (h : 0 < c) :
282
410
(λ x, x * c) '' Icc a b = Icc (a * c) (b * c) :=
283
411
begin
284
- ext x,
285
- split,
286
- { rintros ⟨x, hx, rfl⟩,
287
- exact ⟨mul_le_mul_of_nonneg_right hx.1 (le_of_lt h),
288
- mul_le_mul_of_nonneg_right hx.2 (le_of_lt h)⟩ },
289
- { intro hx,
290
- refine ⟨x / c, _, div_mul_cancel x (ne_of_gt h)⟩,
291
- exact ⟨le_div_of_mul_le h hx.1 , div_le_of_le_mul h (mul_comm b c ▸ hx.2 )⟩ }
412
+ refine ((units.mk0 c (ne_of_gt h)).mul_right.image_eq_preimage _).trans _,
413
+ simp [h, division_def]
292
414
end
293
415
294
416
lemma image_mul_right_Icc {a b c : k} (hab : a ≤ b) (hc : 0 ≤ c) :
0 commit comments