Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit c6b5330

Browse files
committed
feat(set_theory/ordinal/fixed_point): add missing theorem (#18323)
We add `apply_lt_nfp_bfamily` matching `apply_lt_nfp_family`, and rename the existing theorem with that name to `apply_lt_nfp_bfamily_iff`, matching `apply_lt_nfp_family_iff`.
1 parent 146a2ee commit c6b5330

File tree

1 file changed

+13
-8
lines changed

1 file changed

+13
-8
lines changed

src/set_theory/ordinal/fixed_point.lean

Lines changed: 13 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -237,20 +237,25 @@ sup_le
237237
theorem nfp_bfamily_monotone (hf : ∀ i hi, monotone (f i hi)) : monotone (nfp_bfamily o f) :=
238238
nfp_family_monotone (λ i, hf _ _)
239239

240-
theorem apply_lt_nfp_bfamily (ho : o ≠ 0) (H : ∀ i hi, is_normal (f i hi)) {a b} :
241-
(i hi, f i hi b < nfp_bfamily o f a) ↔ b < nfp_bfamily o f a :=
240+
theorem apply_lt_nfp_bfamily (H : ∀ i hi, is_normal (f i hi)) {a b} (hb : b < nfp_bfamily o f a)
241+
(i hi) : f i hi b < nfp_bfamily o f a :=
242242
begin
243-
unfold nfp_bfamily,
244-
rw ←@apply_lt_nfp_family_iff _ (family_of_bfamily o f) (out_nonempty_iff_ne_zero.2 ho)
245-
(λ i, H _ _),
246-
refine ⟨λ h i, h _ (typein_lt_self i), λ h i hio, _⟩,
247243
rw ←family_of_bfamily_enum o f,
248-
apply h
244+
apply apply_lt_nfp_family _ hb,
245+
exact λ _, H _ _
249246
end
250247

248+
theorem apply_lt_nfp_bfamily_iff (ho : o ≠ 0) (H : ∀ i hi, is_normal (f i hi)) {a b} :
249+
(∀ i hi, f i hi b < nfp_bfamily o f a) ↔ b < nfp_bfamily o f a :=
250+
⟨λ h, begin
251+
haveI := out_nonempty_iff_ne_zero.2 ho,
252+
refine (apply_lt_nfp_family_iff _).1 (λ _, h _ _),
253+
exact λ _, H _ _,
254+
end, apply_lt_nfp_bfamily H⟩
255+
251256
theorem nfp_bfamily_le_apply (ho : o ≠ 0) (H : ∀ i hi, is_normal (f i hi)) {a b} :
252257
(∃ i hi, nfp_bfamily o f a ≤ f i hi b) ↔ nfp_bfamily o f a ≤ b :=
253-
by { rw ←not_iff_not, push_neg, convert apply_lt_nfp_bfamily ho H, simp only [not_le] }
258+
by { rw ←not_iff_not, push_neg, convert apply_lt_nfp_bfamily_iff ho H, simp only [not_le] }
254259

255260
theorem nfp_bfamily_le_fp (H : ∀ i hi, monotone (f i hi)) {a b} (ab : a ≤ b)
256261
(h : ∀ i hi, f i hi b ≤ b) : nfp_bfamily o f a ≤ b :=

0 commit comments

Comments
 (0)