@@ -160,10 +160,20 @@ instance : ring (A ⊗[R] B) :=
160
160
.. (by apply_instance : semiring (A ⊗[R] B)) }.
161
161
162
162
@[simp]
163
- lemma mul_tmul (a₁ a₂ : A) (b₁ b₂ : B) :
163
+ lemma tmul_mul_tmul (a₁ a₂ : A) (b₁ b₂ : B) :
164
164
(a₁ ⊗ₜ[R] b₁) * (a₂ ⊗ₜ[R] b₂) = (a₁ * a₂) ⊗ₜ[R] (b₁ * b₂) :=
165
165
rfl
166
166
167
+ @[simp]
168
+ lemma tmul_pow (a : A) (b : B) (k : ℕ) :
169
+ (a ⊗ₜ[R] b)^k = (a^k) ⊗ₜ[R] (b^k) :=
170
+ begin
171
+ induction k with k ih,
172
+ { simp [one_def], },
173
+ { simp [pow_succ, ih], }
174
+ end
175
+
176
+
167
177
/--
168
178
The algebra map `R →+* (A ⊗[R] B)` giving `A ⊗[R] B` the structure of an `R`-algebra.
169
179
-/
@@ -218,6 +228,9 @@ def include_left : A →ₐ[R] A ⊗[R] B :=
218
228
map_mul' := by simp,
219
229
commutes' := by simp, }
220
230
231
+ @[simp]
232
+ lemma include_left_apply (a : A) : (include_left : A →ₐ[R] A ⊗[R] B) a = a ⊗ₜ 1 := rfl
233
+
221
234
/-- The algebra morphism `B →ₐ[R] A ⊗[R] B` sending `b` to `1 ⊗ₜ b`. -/
222
235
def include_right : B →ₐ[R] A ⊗[R] B :=
223
236
{ to_fun := λ b, 1 ⊗ₜ b,
@@ -233,6 +246,9 @@ def include_right : B →ₐ[R] A ⊗[R] B :=
233
246
{ simp [algebra.smul_def], },
234
247
end , }
235
248
249
+ @[simp]
250
+ lemma include_right_apply (b : B) : (include_right : B →ₐ[R] A ⊗[R] B) b = 1 ⊗ₜ b := rfl
251
+
236
252
end ring
237
253
238
254
section comm_ring
@@ -317,6 +333,10 @@ def alg_hom_of_linear_map_tensor_product
317
333
commutes' := λ r, by simp [w₂],
318
334
.. f }
319
335
336
+ @[simp]
337
+ lemma alg_hom_of_linear_map_tensor_product_apply (f w₁ w₂ x) :
338
+ (alg_hom_of_linear_map_tensor_product f w₁ w₂ : A ⊗[R] B →ₐ[R] C) x = f x := rfl
339
+
320
340
/--
321
341
Build an algebra equivalence from a linear equivalence out of a tensor product,
322
342
and evidence of multiplicativity on pure tensors.
0 commit comments