Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit ca44926

Browse files
committed
chore(ring_theory/tensor_product): missing simp lemmas (#3215)
A few missing `simp` lemmas. Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
1 parent a443d8b commit ca44926

File tree

1 file changed

+21
-1
lines changed

1 file changed

+21
-1
lines changed

src/ring_theory/tensor_product.lean

Lines changed: 21 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -160,10 +160,20 @@ instance : ring (A ⊗[R] B) :=
160160
.. (by apply_instance : semiring (A ⊗[R] B)) }.
161161

162162
@[simp]
163-
lemma mul_tmul (a₁ a₂ : A) (b₁ b₂ : B) :
163+
lemma tmul_mul_tmul (a₁ a₂ : A) (b₁ b₂ : B) :
164164
(a₁ ⊗ₜ[R] b₁) * (a₂ ⊗ₜ[R] b₂) = (a₁ * a₂) ⊗ₜ[R] (b₁ * b₂) :=
165165
rfl
166166

167+
@[simp]
168+
lemma tmul_pow (a : A) (b : B) (k : ℕ) :
169+
(a ⊗ₜ[R] b)^k = (a^k) ⊗ₜ[R] (b^k) :=
170+
begin
171+
induction k with k ih,
172+
{ simp [one_def], },
173+
{ simp [pow_succ, ih], }
174+
end
175+
176+
167177
/--
168178
The algebra map `R →+* (A ⊗[R] B)` giving `A ⊗[R] B` the structure of an `R`-algebra.
169179
-/
@@ -218,6 +228,9 @@ def include_left : A →ₐ[R] A ⊗[R] B :=
218228
map_mul' := by simp,
219229
commutes' := by simp, }
220230

231+
@[simp]
232+
lemma include_left_apply (a : A) : (include_left : A →ₐ[R] A ⊗[R] B) a = a ⊗ₜ 1 := rfl
233+
221234
/-- The algebra morphism `B →ₐ[R] A ⊗[R] B` sending `b` to `1 ⊗ₜ b`. -/
222235
def include_right : B →ₐ[R] A ⊗[R] B :=
223236
{ to_fun := λ b, 1 ⊗ₜ b,
@@ -233,6 +246,9 @@ def include_right : B →ₐ[R] A ⊗[R] B :=
233246
{ simp [algebra.smul_def], },
234247
end, }
235248

249+
@[simp]
250+
lemma include_right_apply (b : B) : (include_right : B →ₐ[R] A ⊗[R] B) b = 1 ⊗ₜ b := rfl
251+
236252
end ring
237253

238254
section comm_ring
@@ -317,6 +333,10 @@ def alg_hom_of_linear_map_tensor_product
317333
commutes' := λ r, by simp [w₂],
318334
.. f }
319335

336+
@[simp]
337+
lemma alg_hom_of_linear_map_tensor_product_apply (f w₁ w₂ x) :
338+
(alg_hom_of_linear_map_tensor_product f w₁ w₂ : A ⊗[R] B →ₐ[R] C) x = f x := rfl
339+
320340
/--
321341
Build an algebra equivalence from a linear equivalence out of a tensor product,
322342
and evidence of multiplicativity on pure tensors.

0 commit comments

Comments
 (0)