|
| 1 | +/- |
| 2 | +Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Violeta Hernández Palacios |
| 5 | +-/ |
| 6 | +import order.min_max |
| 7 | +import order.rel_classes |
| 8 | +import data.set.intervals.basic |
| 9 | + |
| 10 | +/-! |
| 11 | +# Bounded and unbounded sets |
| 12 | +
|
| 13 | +We prove miscellaneous lemmas about bounded and unbounded sets. Many of these are just variations on |
| 14 | +the same ideas, or similar results with a few minor differences. The file is divided into these |
| 15 | +different general ideas. |
| 16 | +-/ |
| 17 | + |
| 18 | +variables {α : Type*} {r : α → α → Prop} {s t : set α} |
| 19 | + |
| 20 | +/-! ### Subsets of bounded and unbounded sets -/ |
| 21 | + |
| 22 | +theorem bounded.mono (hst : s ⊆ t) (hs : bounded r t) : bounded r s := |
| 23 | +hs.imp $ λ a ha b hb, ha b (hst hb) |
| 24 | + |
| 25 | +theorem unbounded.mono (hst : s ⊆ t) (hs : unbounded r s) : unbounded r t := |
| 26 | +λ a, let ⟨b, hb, hb'⟩ := hs a in ⟨b, hst hb, hb'⟩ |
| 27 | + |
| 28 | +/-! ### Alternate characterizations of unboundedness on orders -/ |
| 29 | + |
| 30 | +lemma unbounded_le_of_forall_exists_lt [preorder α] (h : ∀ a, ∃ b ∈ s, a < b) : unbounded (≤) s := |
| 31 | +λ a, let ⟨b, hb, hb'⟩ := h a in ⟨b, hb, λ hba, hba.not_lt hb'⟩ |
| 32 | + |
| 33 | +lemma unbounded_le_iff [linear_order α] : unbounded (≤) s ↔ ∀ a, ∃ b ∈ s, a < b := |
| 34 | +by simp only [unbounded, not_le] |
| 35 | + |
| 36 | +lemma unbounded_lt_of_forall_exists_le [preorder α] (h : ∀ a, ∃ b ∈ s, a ≤ b) : unbounded (<) s := |
| 37 | +λ a, let ⟨b, hb, hb'⟩ := h a in ⟨b, hb, λ hba, hba.not_le hb'⟩ |
| 38 | + |
| 39 | +lemma unbounded_lt_iff [linear_order α] : unbounded (<) s ↔ ∀ a, ∃ b ∈ s, a ≤ b := |
| 40 | +by simp only [unbounded, not_lt] |
| 41 | + |
| 42 | +lemma unbounded_ge_of_forall_exists_gt [preorder α] (h : ∀ a, ∃ b ∈ s, b < a) : unbounded (≥) s := |
| 43 | +@unbounded_le_of_forall_exists_lt (order_dual α) _ _ h |
| 44 | + |
| 45 | +lemma unbounded_ge_iff [linear_order α] : unbounded (≥) s ↔ ∀ a, ∃ b ∈ s, b < a := |
| 46 | +⟨λ h a, let ⟨b, hb, hba⟩ := h a in ⟨b, hb, lt_of_not_ge hba⟩, unbounded_ge_of_forall_exists_gt⟩ |
| 47 | + |
| 48 | +lemma unbounded_gt_of_forall_exists_ge [preorder α] (h : ∀ a, ∃ b ∈ s, b ≤ a) : unbounded (>) s := |
| 49 | +λ a, let ⟨b, hb, hb'⟩ := h a in ⟨b, hb, λ hba, not_le_of_gt hba hb'⟩ |
| 50 | + |
| 51 | +lemma unbounded_gt_iff [linear_order α] : unbounded (>) s ↔ ∀ a, ∃ b ∈ s, b ≤ a := |
| 52 | +⟨λ h a, let ⟨b, hb, hba⟩ := h a in ⟨b, hb, le_of_not_gt hba⟩, unbounded_gt_of_forall_exists_ge⟩ |
| 53 | + |
| 54 | +/-! ### Relation between boundedness by strict and nonstrict orders. -/ |
| 55 | + |
| 56 | +/-! #### Less and less or equal -/ |
| 57 | + |
| 58 | +lemma bounded.rel_mono {r' : α → α → Prop} (h : bounded r s) (hrr' : r ≤ r') : bounded r' s := |
| 59 | +let ⟨a, ha⟩ := h in ⟨a, λ b hb, hrr' b a (ha b hb)⟩ |
| 60 | + |
| 61 | +lemma bounded_le_of_bounded_lt [preorder α] (h : bounded (<) s) : bounded (≤) s := |
| 62 | +h.rel_mono $ λ _ _, le_of_lt |
| 63 | + |
| 64 | +lemma unbounded.rel_mono {r' : α → α → Prop} (hr : r' ≤ r) (h : unbounded r s) : unbounded r' s := |
| 65 | +λ a, let ⟨b, hb, hba⟩ := h a in ⟨b, hb, λ hba', hba (hr b a hba')⟩ |
| 66 | + |
| 67 | +lemma unbounded_lt_of_unbounded_le [preorder α] (h : unbounded (≤) s) : |
| 68 | + unbounded (<) s := |
| 69 | +h.rel_mono $ λ _ _, le_of_lt |
| 70 | + |
| 71 | +lemma bounded_le_iff_bounded_lt [preorder α] [no_max_order α] : bounded (≤) s ↔ bounded (<) s := |
| 72 | +begin |
| 73 | + refine ⟨λ h, _, bounded_le_of_bounded_lt⟩, |
| 74 | + cases h with a ha, |
| 75 | + cases exists_gt a with b hb, |
| 76 | + exact ⟨b, λ c hc, lt_of_le_of_lt (ha c hc) hb⟩ |
| 77 | +end |
| 78 | + |
| 79 | +lemma unbounded_lt_iff_unbounded_le [preorder α] [no_max_order α] : |
| 80 | + unbounded (<) s ↔ unbounded (≤) s := |
| 81 | +by simp_rw [← not_bounded_iff, bounded_le_iff_bounded_lt] |
| 82 | + |
| 83 | +/-! #### Greater and greater or equal -/ |
| 84 | + |
| 85 | +lemma bounded_ge_of_bounded_gt [preorder α] (h : bounded (>) s) : bounded (≥) s := |
| 86 | +let ⟨a, ha⟩ := h in ⟨a, λ b hb, le_of_lt (ha b hb)⟩ |
| 87 | + |
| 88 | +lemma unbounded_gt_of_unbounded_ge [preorder α] (h : unbounded (≥) s) : unbounded (>) s := |
| 89 | +λ a, let ⟨b, hb, hba⟩ := h a in ⟨b, hb, λ hba', hba (le_of_lt hba')⟩ |
| 90 | + |
| 91 | +lemma bounded_ge_iff_bounded_gt [preorder α] [no_min_order α] : bounded (≥) s ↔ bounded (>) s := |
| 92 | +@bounded_le_iff_bounded_lt (order_dual α) _ _ _ |
| 93 | + |
| 94 | +lemma unbounded_ge_iff_unbounded_gt [preorder α] [no_min_order α] : |
| 95 | + unbounded (≥) s ↔ unbounded (>) s := |
| 96 | +(@unbounded_lt_iff_unbounded_le (order_dual α) _ _ _).symm |
| 97 | + |
| 98 | +/-! ### Bounded and unbounded intervals -/ |
| 99 | + |
| 100 | +theorem bounded_self (a : α) : bounded r {b | r b a} := |
| 101 | +⟨a, λ x, id⟩ |
| 102 | + |
| 103 | +/-! #### Half-open bounded intervals -/ |
| 104 | + |
| 105 | +theorem bounded_lt_Iio [preorder α] (a : α) : bounded (<) (set.Iio a) := |
| 106 | +bounded_self a |
| 107 | + |
| 108 | +theorem bounded_le_Iio [preorder α] (a : α) : bounded (≤) (set.Iio a) := |
| 109 | +bounded_le_of_bounded_lt (bounded_lt_Iio a) |
| 110 | + |
| 111 | +theorem bounded_le_Iic [preorder α] (a : α) : bounded (≤) (set.Iic a) := |
| 112 | +bounded_self a |
| 113 | + |
| 114 | +theorem bounded_lt_Iic [preorder α] [no_max_order α] (a : α) : bounded (<) (set.Iic a) := |
| 115 | +by simp only [← bounded_le_iff_bounded_lt, bounded_le_Iic] |
| 116 | + |
| 117 | +theorem bounded_gt_Ioi [preorder α] (a : α) : bounded (>) (set.Ioi a) := |
| 118 | +bounded_self a |
| 119 | + |
| 120 | +theorem bounded_ge_Ioi [preorder α] (a : α) : bounded (≥) (set.Ioi a) := |
| 121 | +bounded_ge_of_bounded_gt (bounded_gt_Ioi a) |
| 122 | + |
| 123 | +theorem bounded_ge_Ici [preorder α] (a : α) : bounded (≥) (set.Ici a) := |
| 124 | +bounded_self a |
| 125 | + |
| 126 | +theorem bounded_gt_Ici [preorder α] [no_min_order α] (a : α) : bounded (>) (set.Ici a) := |
| 127 | +by simp only [← bounded_ge_iff_bounded_gt, bounded_ge_Ici] |
| 128 | + |
| 129 | +/-! #### Other bounded intervals -/ |
| 130 | + |
| 131 | +theorem bounded_lt_Ioo [preorder α] (a b : α) : bounded (<) (set.Ioo a b) := |
| 132 | +(bounded_lt_Iio b).mono set.Ioo_subset_Iio_self |
| 133 | + |
| 134 | +theorem bounded_lt_Ico [preorder α] (a b : α) : bounded (<) (set.Ico a b) := |
| 135 | +(bounded_lt_Iio b).mono set.Ico_subset_Iio_self |
| 136 | + |
| 137 | +theorem bounded_lt_Ioc [preorder α] [no_max_order α] (a b : α) : bounded (<) (set.Ioc a b) := |
| 138 | +(bounded_lt_Iic b).mono set.Ioc_subset_Iic_self |
| 139 | + |
| 140 | +theorem bounded_lt_Icc [preorder α] [no_max_order α] (a b : α) : bounded (<) (set.Icc a b) := |
| 141 | +(bounded_lt_Iic b).mono set.Icc_subset_Iic_self |
| 142 | + |
| 143 | +theorem bounded_le_Ioo [preorder α] (a b : α) : bounded (≤) (set.Ioo a b) := |
| 144 | +(bounded_le_Iio b).mono set.Ioo_subset_Iio_self |
| 145 | + |
| 146 | +theorem bounded_le_Ico [preorder α] (a b : α) : bounded (≤) (set.Ico a b) := |
| 147 | +(bounded_le_Iio b).mono set.Ico_subset_Iio_self |
| 148 | + |
| 149 | +theorem bounded_le_Ioc [preorder α] (a b : α) : bounded (≤) (set.Ioc a b) := |
| 150 | +(bounded_le_Iic b).mono set.Ioc_subset_Iic_self |
| 151 | + |
| 152 | +theorem bounded_le_Icc [preorder α] (a b : α) : bounded (≤) (set.Icc a b) := |
| 153 | +(bounded_le_Iic b).mono set.Icc_subset_Iic_self |
| 154 | + |
| 155 | +theorem bounded_gt_Ioo [preorder α] (a b : α) : bounded (>) (set.Ioo a b) := |
| 156 | +(bounded_gt_Ioi a).mono set.Ioo_subset_Ioi_self |
| 157 | + |
| 158 | +theorem bounded_gt_Ioc [preorder α] (a b : α) : bounded (>) (set.Ioc a b) := |
| 159 | +(bounded_gt_Ioi a).mono set.Ioc_subset_Ioi_self |
| 160 | + |
| 161 | +theorem bounded_gt_Ico [preorder α] [no_min_order α] (a b : α) : bounded (>) (set.Ico a b) := |
| 162 | +(bounded_gt_Ici a).mono set.Ico_subset_Ici_self |
| 163 | + |
| 164 | +theorem bounded_gt_Icc [preorder α] [no_min_order α] (a b : α) : bounded (>) (set.Icc a b) := |
| 165 | +(bounded_gt_Ici a).mono set.Icc_subset_Ici_self |
| 166 | + |
| 167 | +theorem bounded_ge_Ioo [preorder α] (a b : α) : bounded (≥) (set.Ioo a b) := |
| 168 | +(bounded_ge_Ioi a).mono set.Ioo_subset_Ioi_self |
| 169 | + |
| 170 | +theorem bounded_ge_Ioc [preorder α] (a b : α) : bounded (≥) (set.Ioc a b) := |
| 171 | +(bounded_ge_Ioi a).mono set.Ioc_subset_Ioi_self |
| 172 | + |
| 173 | +theorem bounded_ge_Ico [preorder α] (a b : α) : bounded (≥) (set.Ico a b) := |
| 174 | +(bounded_ge_Ici a).mono set.Ico_subset_Ici_self |
| 175 | + |
| 176 | +theorem bounded_ge_Icc [preorder α] (a b : α) : bounded (≥) (set.Icc a b) := |
| 177 | +(bounded_ge_Ici a).mono set.Icc_subset_Ici_self |
| 178 | + |
| 179 | +/-! #### Unbounded intervals -/ |
| 180 | + |
| 181 | +theorem unbounded_le_Ioi [semilattice_sup α] [no_max_order α] (a : α) : unbounded (≤) (set.Ioi a) := |
| 182 | +λ b, let ⟨c, hc⟩ := exists_gt (a ⊔ b) in |
| 183 | + ⟨c, le_sup_left.trans_lt hc, (le_sup_right.trans_lt hc).not_le⟩ |
| 184 | + |
| 185 | +theorem unbounded_le_Ici [semilattice_sup α] [no_max_order α] (a : α) : unbounded (≤) (set.Ici a) := |
| 186 | +(unbounded_le_Ioi a).mono set.Ioi_subset_Ici_self |
| 187 | + |
| 188 | +theorem unbounded_lt_Ioi [semilattice_sup α] [no_max_order α] (a : α) : unbounded (<) (set.Ioi a) := |
| 189 | +unbounded_lt_of_unbounded_le (unbounded_le_Ioi a) |
| 190 | + |
| 191 | +theorem unbounded_lt_Ici [semilattice_sup α] (a : α) : unbounded (<) (set.Ici a) := |
| 192 | +λ b, ⟨a ⊔ b, le_sup_left, le_sup_right.not_lt⟩ |
| 193 | + |
| 194 | +/-! ### Bounded initial segments -/ |
| 195 | + |
| 196 | +theorem bounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m) (a : α) : |
| 197 | + bounded r (s ∩ {b | ¬ r b a}) ↔ bounded r s := |
| 198 | +begin |
| 199 | + refine ⟨_, bounded.mono (set.inter_subset_left s _)⟩, |
| 200 | + rintro ⟨b, hb⟩, |
| 201 | + cases H a b with m hm, |
| 202 | + exact ⟨m, λ c hc, hm c (or_iff_not_imp_left.2 (λ hca, (hb c ⟨hc, hca⟩)))⟩ |
| 203 | +end |
| 204 | + |
| 205 | +theorem unbounded_inter_not (H : ∀ a b, ∃ m, ∀ c, r c a ∨ r c b → r c m) (a : α) : |
| 206 | + unbounded r (s ∩ {b | ¬ r b a}) ↔ unbounded r s := |
| 207 | +by simp_rw [← not_bounded_iff, bounded_inter_not H] |
| 208 | + |
| 209 | +/-! #### Less or equal -/ |
| 210 | + |
| 211 | +theorem bounded_le_inter_not_le [semilattice_sup α] (a : α) : |
| 212 | + bounded (≤) (s ∩ {b | ¬ b ≤ a}) ↔ bounded (≤) s := |
| 213 | +bounded_inter_not (λ x y, ⟨x ⊔ y, λ z h, h.elim le_sup_of_le_left le_sup_of_le_right⟩) a |
| 214 | + |
| 215 | +theorem unbounded_le_inter_not_le [semilattice_sup α] (a : α) : |
| 216 | + unbounded (≤) (s ∩ {b | ¬ b ≤ a}) ↔ unbounded (≤) s := |
| 217 | +begin |
| 218 | + rw [←not_bounded_iff, ←not_bounded_iff, not_iff_not], |
| 219 | + exact bounded_le_inter_not_le a |
| 220 | +end |
| 221 | + |
| 222 | +theorem bounded_le_inter_lt [linear_order α] (a : α) : |
| 223 | + bounded (≤) (s ∩ {b | a < b}) ↔ bounded (≤) s := |
| 224 | +by simp_rw [← not_le, bounded_le_inter_not_le] |
| 225 | + |
| 226 | +theorem unbounded_le_inter_lt [linear_order α] (a : α) : |
| 227 | + unbounded (≤) (s ∩ {b | a < b}) ↔ unbounded (≤) s := |
| 228 | +by { convert unbounded_le_inter_not_le a, ext, exact lt_iff_not_ge' } |
| 229 | + |
| 230 | +theorem bounded_le_inter_le [linear_order α] (a : α) : |
| 231 | + bounded (≤) (s ∩ {b | a ≤ b}) ↔ bounded (≤) s := |
| 232 | +begin |
| 233 | + refine ⟨_, bounded.mono (set.inter_subset_left s _)⟩, |
| 234 | + rw ←@bounded_le_inter_lt _ s _ a, |
| 235 | + exact bounded.mono (λ x ⟨hx, hx'⟩, ⟨hx, le_of_lt hx'⟩) |
| 236 | +end |
| 237 | + |
| 238 | +theorem unbounded_le_inter_le [linear_order α] (a : α) : |
| 239 | + unbounded (≤) (s ∩ {b | a ≤ b}) ↔ unbounded (≤) s := |
| 240 | +begin |
| 241 | + rw [←not_bounded_iff, ←not_bounded_iff, not_iff_not], |
| 242 | + exact bounded_le_inter_le a |
| 243 | +end |
| 244 | + |
| 245 | +/-! #### Less than -/ |
| 246 | + |
| 247 | +theorem bounded_lt_inter_not_lt [semilattice_sup α] (a : α) : |
| 248 | + bounded (<) (s ∩ {b | ¬ b < a}) ↔ bounded (<) s := |
| 249 | +bounded_inter_not (λ x y, ⟨x ⊔ y, λ z h, h.elim lt_sup_of_lt_left lt_sup_of_lt_right⟩) a |
| 250 | + |
| 251 | +theorem unbounded_lt_inter_not_lt [semilattice_sup α] (a : α) : |
| 252 | + unbounded (<) (s ∩ {b | ¬ b < a}) ↔ unbounded (<) s := |
| 253 | +begin |
| 254 | + rw [←not_bounded_iff, ←not_bounded_iff, not_iff_not], |
| 255 | + exact bounded_lt_inter_not_lt a |
| 256 | +end |
| 257 | + |
| 258 | +theorem bounded_lt_inter_le [linear_order α] (a : α) : |
| 259 | + bounded (<) (s ∩ {b | a ≤ b}) ↔ bounded (<) s := |
| 260 | +by { convert bounded_lt_inter_not_lt a, ext, exact not_lt.symm } |
| 261 | + |
| 262 | +theorem unbounded_lt_inter_le [linear_order α] (a : α) : |
| 263 | + unbounded (<) (s ∩ {b | a ≤ b}) ↔ unbounded (<) s := |
| 264 | +by { convert unbounded_lt_inter_not_lt a, ext, exact not_lt.symm } |
| 265 | + |
| 266 | +theorem bounded_lt_inter_lt [linear_order α] [no_max_order α] (a : α) : |
| 267 | + bounded (<) (s ∩ {b | a < b}) ↔ bounded (<) s := |
| 268 | +begin |
| 269 | + rw [←bounded_le_iff_bounded_lt, ←bounded_le_iff_bounded_lt], |
| 270 | + exact bounded_le_inter_lt a |
| 271 | +end |
| 272 | + |
| 273 | +theorem unbounded_lt_inter_lt [linear_order α] [no_max_order α] (a : α) : |
| 274 | + unbounded (<) (s ∩ {b | a < b}) ↔ unbounded (<) s := |
| 275 | +begin |
| 276 | + rw [←not_bounded_iff, ←not_bounded_iff, not_iff_not], |
| 277 | + exact bounded_lt_inter_lt a |
| 278 | +end |
| 279 | + |
| 280 | +/-! #### Greater or equal -/ |
| 281 | + |
| 282 | +theorem bounded_ge_inter_not_ge [semilattice_inf α] (a : α) : |
| 283 | + bounded (≥) (s ∩ {b | ¬ a ≤ b}) ↔ bounded (≥) s := |
| 284 | +@bounded_le_inter_not_le (order_dual α) s _ a |
| 285 | + |
| 286 | +theorem unbounded_ge_inter_not_ge [semilattice_inf α] (a : α) : |
| 287 | + unbounded (≥) (s ∩ {b | ¬ a ≤ b}) ↔ unbounded (≥) s := |
| 288 | +@unbounded_le_inter_not_le (order_dual α) s _ a |
| 289 | + |
| 290 | +theorem bounded_ge_inter_gt [linear_order α] (a : α) : |
| 291 | + bounded (≥) (s ∩ {b | b < a}) ↔ bounded (≥) s := |
| 292 | +@bounded_le_inter_lt (order_dual α) s _ a |
| 293 | + |
| 294 | +theorem unbounded_ge_inter_gt [linear_order α] (a : α) : |
| 295 | + unbounded (≥) (s ∩ {b | b < a}) ↔ unbounded (≥) s := |
| 296 | +@unbounded_le_inter_lt (order_dual α) s _ a |
| 297 | + |
| 298 | +theorem bounded_ge_inter_ge [linear_order α] (a : α) : |
| 299 | + bounded (≥) (s ∩ {b | b ≤ a}) ↔ bounded (≥) s := |
| 300 | +@bounded_le_inter_le (order_dual α) s _ a |
| 301 | + |
| 302 | +theorem unbounded_ge_iff_unbounded_inter_ge [linear_order α] (a : α) : |
| 303 | + unbounded (≥) (s ∩ {b | b ≤ a}) ↔ unbounded (≥) s := |
| 304 | +@unbounded_le_inter_le (order_dual α) s _ a |
| 305 | + |
| 306 | +/-! #### Greater than -/ |
| 307 | + |
| 308 | +theorem bounded_gt_inter_not_gt [semilattice_inf α] (a : α) : |
| 309 | + bounded (>) (s ∩ {b | ¬ a < b}) ↔ bounded (>) s := |
| 310 | +@bounded_lt_inter_not_lt (order_dual α) s _ a |
| 311 | + |
| 312 | +theorem unbounded_gt_inter_not_gt [semilattice_inf α] (a : α) : |
| 313 | + unbounded (>) (s ∩ {b | ¬ a < b}) ↔ unbounded (>) s := |
| 314 | +@unbounded_lt_inter_not_lt (order_dual α) s _ a |
| 315 | + |
| 316 | +theorem bounded_gt_inter_ge [linear_order α] (a : α) : |
| 317 | + bounded (>) (s ∩ {b | b ≤ a}) ↔ bounded (>) s := |
| 318 | +@bounded_lt_inter_le (order_dual α) s _ a |
| 319 | + |
| 320 | +theorem unbounded_inter_ge [linear_order α] (a : α) : |
| 321 | + unbounded (>) (s ∩ {b | b ≤ a}) ↔ unbounded (>) s := |
| 322 | +@unbounded_lt_inter_le (order_dual α) s _ a |
| 323 | + |
| 324 | +theorem bounded_gt_inter_gt [linear_order α] [no_min_order α] (a : α) : |
| 325 | + bounded (>) (s ∩ {b | b < a}) ↔ bounded (>) s := |
| 326 | +@bounded_lt_inter_lt (order_dual α) s _ _ a |
| 327 | + |
| 328 | +theorem unbounded_gt_inter_gt [linear_order α] [no_min_order α] (a : α) : |
| 329 | + unbounded (>) (s ∩ {b | b < a}) ↔ unbounded (>) s := |
| 330 | +@unbounded_lt_inter_lt (order_dual α) s _ _ a |
0 commit comments