|
| 1 | +/- |
| 2 | +Copyright (c) 2021 Yury G. Kudryashov. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Author: Yury G. Kudryashov |
| 5 | +-/ |
| 6 | +import analysis.analytic.basic |
| 7 | + |
| 8 | +/-! |
| 9 | +# Linear functions are analytic |
| 10 | +
|
| 11 | +In this file we prove that a `continuous_linear_map` defines an analytic function with |
| 12 | +the formal power series `f x = f a + f (x - a)`. |
| 13 | +-/ |
| 14 | + |
| 15 | +variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] |
| 16 | +{E : Type*} [normed_group E] [normed_space 𝕜 E] |
| 17 | +{F : Type*} [normed_group F] [normed_space 𝕜 F] |
| 18 | + |
| 19 | +open_locale topological_space classical big_operators nnreal ennreal |
| 20 | +open set filter asymptotics |
| 21 | + |
| 22 | +noncomputable theory |
| 23 | + |
| 24 | +namespace continuous_linear_map |
| 25 | + |
| 26 | +/-- Formal power series of a continuous linear map `f : E →L[𝕜] F` at `x : E`: |
| 27 | +`f y = f x + f (y - x)`. -/ |
| 28 | +@[simp] def fpower_series (f : E →L[𝕜] F) (x : E) : formal_multilinear_series 𝕜 E F |
| 29 | +| 0 := continuous_multilinear_map.curry0 𝕜 _ (f x) |
| 30 | +| 1 := (continuous_multilinear_curry_fin1 𝕜 _ _).symm f |
| 31 | +| _ := 0 |
| 32 | + |
| 33 | +@[simp] lemma fpower_series_apply_add_two (f : E →L[𝕜] F) (x : E) (n : ℕ) : |
| 34 | + f.fpower_series x (n + 2) = 0 := rfl |
| 35 | + |
| 36 | +@[simp] lemma fpower_series_radius (f : E →L[𝕜] F) (x : E) : (f.fpower_series x).radius = ∞ := |
| 37 | +(f.fpower_series x).radius_eq_top_of_forall_image_add_eq_zero 2 $ λ n, rfl |
| 38 | + |
| 39 | +protected theorem has_fpower_series_on_ball (f : E →L[𝕜] F) (x : E) : |
| 40 | + has_fpower_series_on_ball f (f.fpower_series x) x ∞ := |
| 41 | +{ r_le := by simp, |
| 42 | + r_pos := ennreal.coe_lt_top, |
| 43 | + has_sum := λ y _, (has_sum_nat_add_iff' 2).1 $ |
| 44 | + by simp [finset.sum_range_succ, ← sub_sub, has_sum_zero] } |
| 45 | + |
| 46 | +protected theorem has_fpower_series_at (f : E →L[𝕜] F) (x : E) : |
| 47 | + has_fpower_series_at f (f.fpower_series x) x := |
| 48 | +⟨∞, f.has_fpower_series_on_ball x⟩ |
| 49 | + |
| 50 | +protected theorem analytic_at (f : E →L[𝕜] F) (x : E) : analytic_at 𝕜 f x := |
| 51 | +(f.has_fpower_series_at x).analytic_at |
| 52 | + |
| 53 | +end continuous_linear_map |
0 commit comments