Skip to content

Commit

Permalink
feat(topology): basic setup for measurable spaces
Browse files Browse the repository at this point in the history
  • Loading branch information
johoelzl committed Aug 30, 2017
1 parent 51042cd commit cb7fb9b
Showing 1 changed file with 214 additions and 0 deletions.
214 changes: 214 additions & 0 deletions topology/measurable_space.lean
@@ -0,0 +1,214 @@
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
Measurable spaces -- σ-algberas
-/
import data.set order.galois_connection
open classical set lattice
local attribute [instance] decidable_inhabited prop_decidable

universes u v w x

structure measurable_space (α : Type u) :=
(is_measurable : set α → Prop)
(is_measurable_empty : is_measurable ∅)
(is_measurable_compl : ∀s, is_measurable s → is_measurable (- s))
(is_measurable_Union : ∀f:ℕ → set α, (∀i, is_measurable (f i)) → is_measurable (⋃i, f i))

attribute [class] measurable_space

variables {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} {s t u : set α}

section
variable [m : measurable_space α]
include m

def is_measurable : set α → Prop := m.is_measurable
lemma is_measurable_empty : is_measurable (∅ : set α) := m.is_measurable_empty
lemma is_measurable_compl : is_measurable s → is_measurable (-s) :=
m.is_measurable_compl s
lemma is_measurable_Union {f : ℕ → set α} : (∀i, is_measurable (f i)) → is_measurable (⋃i, f i) :=
m.is_measurable_Union f

end

lemma measurable_space_eq :
∀{m₁ m₂ : measurable_space α}, (∀s:set α, m₁.is_measurable s ↔ m₂.is_measurable s) → m₁ = m₂
| ⟨s₁, _, _, _⟩ ⟨s₂, _, _, _⟩ h :=
have s₁ = s₂, from funext $ assume x, propext $ h x,
by subst this

namespace measurable_space
section complete_lattice

instance : partial_order (measurable_space α) :=
{ partial_order .
le := λm₁ m₂, m₁.is_measurable ≤ m₂.is_measurable,
le_refl := assume a b, le_refl _,
le_trans := assume a b c, le_trans,
le_antisymm := assume a b h₁ h₂, measurable_space_eq $ assume s, ⟨h₁ s, h₂ s⟩ }

instance : has_top (measurable_space α) :=
⟨{measurable_space .
is_measurable := λs, true,
is_measurable_empty := trivial,
is_measurable_compl := assume s hs, trivial,
is_measurable_Union := assume f hf, trivial }⟩

instance : has_bot (measurable_space α) :=
⟨{measurable_space .
is_measurable := λs, s = ∅ ∨ s = univ,
is_measurable_empty := or.inl rfl,
is_measurable_compl := by simp [or_imp_iff_and_imp] {contextual := tt},
is_measurable_Union := assume f hf, by_cases
(assume h : ∃i, f i = univ,
let ⟨i, hi⟩ := h in
or.inr $ eq_univ_of_univ_subset $ hi ▸ le_supr f i)
(assume h : ¬ ∃i, f i = univ,
or.inl $ eq_empty_of_subset_empty $ Union_subset $ assume i,
(hf i).elim (by simp {contextual := tt}) (assume hi, false.elim $ h ⟨i, hi⟩)) }⟩

instance : has_inf (measurable_space α) :=
⟨λm₁ m₂, {measurable_space .
is_measurable := λs:set α, m₁.is_measurable s ∧ m₂.is_measurable s,
is_measurable_empty := ⟨m₁.is_measurable_empty, m₂.is_measurable_empty⟩,
is_measurable_compl := assume s ⟨h₁, h₂⟩, ⟨m₁.is_measurable_compl s h₁, m₂.is_measurable_compl s h₂⟩,
is_measurable_Union := assume f hf,
⟨m₁.is_measurable_Union f (λi, (hf i).left), m₂.is_measurable_Union f (λi, (hf i).right)⟩ }⟩

instance : has_Inf (measurable_space α) :=
⟨λx, {measurable_space .
is_measurable := λs:set α, ∀m:measurable_space α, m ∈ x → m.is_measurable s,
is_measurable_empty := assume m hm, m.is_measurable_empty,
is_measurable_compl := assume s hs m hm, m.is_measurable_compl s $ hs _ hm,
is_measurable_Union := assume f hf m hm, m.is_measurable_Union f $ assume i, hf _ _ hm }⟩

protected lemma le_Inf {s : set (measurable_space α)} {m : measurable_space α}
(h : ∀m'∈s, m ≤ m') : m ≤ Inf s :=
assume s hs m hm, h m hm s hs

protected lemma Inf_le {s : set (measurable_space α)} {m : measurable_space α}
(h : m ∈ s) : Inf s ≤ m :=
assume s hs, hs m h

instance : complete_lattice (measurable_space α) :=
{ measurable_space.partial_order with
sup := λa b, Inf {x | a ≤ x ∧ b ≤ x},
le_sup_left := assume a b, measurable_space.le_Inf $ assume x, assume h : a ≤ x ∧ b ≤ x, h.left,
le_sup_right := assume a b, measurable_space.le_Inf $ assume x, assume h : a ≤ x ∧ b ≤ x, h.right,
sup_le := assume a b c h₁ h₂,
measurable_space.Inf_le $ show c ∈ {x | a ≤ x ∧ b ≤ x}, from ⟨h₁, h₂⟩,
inf := (⊓),
le_inf := assume a b h h₁ h₂ s hs, ⟨h₁ s hs, h₂ s hs⟩,
inf_le_left := assume a b s ⟨h₁, h₂⟩, h₁,
inf_le_right := assume a b s ⟨h₁, h₂⟩, h₂,
top := ⊤,
le_top := assume a t ht, trivial,
bot := ⊥,
bot_le := assume a s hs, hs.elim
(assume h, h.symm ▸ a.is_measurable_empty)
(assume h, begin rw [h, ←compl_empty], exact a.is_measurable_compl _ a.is_measurable_empty end),
Sup := λtt, Inf {t | ∀t'∈tt, t' ≤ t},
le_Sup := assume s f h, measurable_space.le_Inf $ assume t ht, ht _ h,
Sup_le := assume s f h, measurable_space.Inf_le $ assume t ht, h _ ht,
Inf := Inf,
le_Inf := assume s a, measurable_space.le_Inf,
Inf_le := assume s a, measurable_space.Inf_le }

instance : inhabited (measurable_space α) := ⟨⊤⟩

end complete_lattice

section functors
variables {m m₁ m₂ : measurable_space α} {m' : measurable_space β} {f : α → β} {g : β → α}

protected def map (f : α → β) (m : measurable_space α) : measurable_space β :=
{measurable_space .
is_measurable := λs, m.is_measurable $ f ⁻¹' s,
is_measurable_empty := m.is_measurable_empty,
is_measurable_compl := assume s hs, m.is_measurable_compl _ hs,
is_measurable_Union := assume f hf, by rw [preimage_Union]; exact m.is_measurable_Union _ hf }

@[simp] lemma map_id : m.map id = m :=
measurable_space_eq $ assume s, iff.refl _

@[simp] lemma map_comp {f : α → β} {g : β → γ} : (m.map f).map g = m.map (g ∘ f) :=
measurable_space_eq $ assume s, by refl

protected def comap (f : α → β) (m : measurable_space β) : measurable_space α :=
{measurable_space .
is_measurable := λs, ∃s', m.is_measurable s' ∧ s = f ⁻¹' s',
is_measurable_empty := ⟨∅, m.is_measurable_empty, rfl⟩,
is_measurable_compl := assume s ⟨s', h₁, h₂⟩, ⟨-s', m.is_measurable_compl _ h₁, h₂.symm ▸ rfl⟩,
is_measurable_Union := assume s hs,
let ⟨s', hs'⟩ := axiom_of_choice hs in
have ∀i, s i = f ⁻¹' s' i, from assume i, (hs' i).right,
⟨⋃i, s' i, m.is_measurable_Union _ (λi, (hs' i).left), by simp [this] ⟩ }

@[simp] lemma comap_id : m.comap id = m :=
measurable_space_eq $ assume s, ⟨assume ⟨s', hs', h⟩, h.symm ▸ hs', assume h, ⟨s, h, rfl⟩⟩

@[simp] lemma comap_comp {f : β → α} {g : γ → β} : (m.comap f).comap g = m.comap (f ∘ g) :=
measurable_space_eq $ assume s,
⟨assume ⟨t, ⟨u, h, hu⟩, ht⟩, ⟨u, h, ht.symm ▸ hu.symm ▸ rfl⟩,
assume ⟨t, h, ht⟩, ⟨f ⁻¹' t, ⟨_, h, rfl⟩, ht⟩⟩

lemma comap_le_iff_le_map {f : α → β} : m'.comap f ≤ m ↔ m' ≤ m.map f :=
⟨assume h s hs, h _ ⟨_, hs, rfl⟩, assume h s ⟨t, ht, heq⟩, heq.symm ▸ h _ ht⟩

lemma gc_comap_map (f : α → β) :
galois_connection (measurable_space.comap f) (measurable_space.map f) :=
assume f g, comap_le_iff_le_map

lemma map_mono (h : m₁ ≤ m₂) : m₁.map f ≤ m₂.map f := (gc_comap_map f).monotone_u h
lemma monotone_map : monotone (measurable_space.map f) := assume a b h, map_mono h
lemma comap_mono (h : m₁ ≤ m₂) : m₁.comap g ≤ m₂.comap g := (gc_comap_map g).monotone_l h
lemma monotone_comap : monotone (measurable_space.comap g) := assume a b h, comap_mono h

@[simp] lemma comap_bot : (⊥:measurable_space α).comap g = ⊥ := (gc_comap_map g).l_bot
@[simp] lemma comap_sup : (m₁ ⊔ m₂).comap g = m₁.comap g ⊔ m₂.comap g := (gc_comap_map g).l_sup
@[simp] lemma comap_supr {m : ι → measurable_space α} :(⨆i, m i).comap g = (⨆i, (m i).comap g) :=
(gc_comap_map g).l_supr

@[simp] lemma map_top : (⊤:measurable_space α).map f = ⊤ := (gc_comap_map f).u_top
@[simp] lemma map_inf : (m₁ ⊓ m₂).map f = m₁.map f ⊓ m₂.map f := (gc_comap_map f).u_inf
@[simp] lemma map_infi {m : ι → measurable_space α} : (⨅i, m i).map f = (⨅i, (m i).map f) :=
(gc_comap_map f).u_infi

lemma comap_map_le : (m.map f).comap f ≤ m := (gc_comap_map f).decreasing_l_u _
lemma le_map_comap : m ≤ (m.comap g).map g := (gc_comap_map g).increasing_u_l _

end functors

end measurable_space

section measurable_functions

def measurable [m₁ : measurable_space α] [m₂ : measurable_space β] {f : α → β} := m₂ ≤ m₁.map f


end measurable_functions

section constructions

instance : measurable_space empty := ⊤
instance : measurable_space unit := ⊤
instance : measurable_space bool := ⊤
instance : measurable_space ℕ := ⊤
instance : measurable_space ℤ := ⊤

instance {p : α → Prop} [m : measurable_space α] : measurable_space (subtype p) :=
m.comap subtype.val

instance [m₁ : measurable_space α] [m₂ : measurable_space β] : measurable_space (α × β) :=
m₁.comap prod.fst ⊔ m₂.comap prod.snd

instance [m₁ : measurable_space α] [m₂ : measurable_space β] : measurable_space (α ⊕ β) :=
m₁.map sum.inl ⊓ m₂.map sum.inr

instance {β : α → Type v} [m : Πa, measurable_space (β a)] : measurable_space (sigma β) :=
⨅a, (m a).map (sigma.mk a)

end constructions

0 comments on commit cb7fb9b

Please sign in to comment.