@@ -238,37 +238,38 @@ lemma comp_mono {p : seminorm 𝕜 F} {q : seminorm 𝕜 F} (f : E →ₗ[𝕜]
238
238
@[simps] def pullback (f : E →ₗ[𝕜] F) : add_monoid_hom (seminorm 𝕜 F) (seminorm 𝕜 E) :=
239
239
⟨λ p, p.comp f, zero_comp f, λ p q, add_comp p q f⟩
240
240
241
- section norm_one_class
242
- variables [norm_one_class 𝕜] (p : seminorm 𝕜 E) (x y : E) (r : ℝ )
241
+ section
242
+ variables (p : seminorm 𝕜 E)
243
243
244
244
@[simp]
245
- protected lemma neg : p (-x) = p x :=
246
- calc p (-x) = p ((-1 : 𝕜) • x) : by rw neg_one_smul
247
- ... = p x : by rw [p.smul, norm_neg, norm_one, one_mul]
245
+ protected lemma neg (x : E) : p (-x) = p x :=
246
+ by rw [←neg_one_smul 𝕜, seminorm.smul, norm_neg, ←seminorm.smul, one_smul]
248
247
249
- protected lemma sub_le : p (x - y) ≤ p x + p y :=
248
+ protected lemma sub_le (x y : E) : p (x - y) ≤ p x + p y :=
250
249
calc
251
250
p (x - y)
252
251
= p (x + -y) : by rw sub_eq_add_neg
253
252
... ≤ p x + p (-y) : p.triangle x (-y)
254
253
... = p x + p y : by rw p.neg
255
254
256
- lemma nonneg : 0 ≤ p x :=
255
+ lemma nonneg (x : E) : 0 ≤ p x :=
257
256
have h: 0 ≤ 2 * p x, from
258
257
calc 0 = p (x + (- x)) : by rw [add_neg_self, map_zero]
259
258
... ≤ p x + p (-x) : p.triangle _ _
260
259
... = 2 * p x : by rw [p.neg, two_mul],
261
260
nonneg_of_mul_nonneg_left h zero_lt_two
262
261
263
- lemma sub_rev : p (x - y) = p (y - x) := by rw [←neg_sub, p.neg]
262
+ lemma sub_rev (x y : E) : p (x - y) = p (y - x) := by rw [←neg_sub, p.neg]
264
263
265
264
/-- The direct path from 0 to y is shorter than the path with x "inserted" in between. -/
266
- lemma le_insert : p y ≤ p x + p (x - y) :=
265
+ lemma le_insert (x y : E) : p y ≤ p x + p (x - y) :=
267
266
calc p y = p (x - (x - y)) : by rw sub_sub_cancel
268
267
... ≤ p x + p (x - y) : p.sub_le _ _
269
268
270
269
/-- The direct path from 0 to x is shorter than the path with y "inserted" in between. -/
271
- lemma le_insert' : p x ≤ p y + p (x - y) := by { rw sub_rev, exact le_insert _ _ _ }
270
+ lemma le_insert' (x y : E) : p x ≤ p y + p (x - y) := by { rw sub_rev, exact le_insert _ _ _ }
271
+
272
+ end
272
273
273
274
instance : order_bot (seminorm 𝕜 E) := ⟨0 , nonneg⟩
274
275
@@ -321,7 +322,6 @@ begin
321
322
{ exact nnreal.coe_pos.mpr ha },
322
323
end
323
324
324
- end norm_one_class
325
325
end module
326
326
end semi_normed_ring
327
327
@@ -468,8 +468,7 @@ begin
468
468
simp_rw [ball, mem_preimage, comp_apply, set.mem_set_of_eq, map_sub],
469
469
end
470
470
471
- section norm_one_class
472
- variables [norm_one_class 𝕜] (p : seminorm 𝕜 E)
471
+ variables (p : seminorm 𝕜 E)
473
472
474
473
lemma ball_zero_eq_preimage_ball {r : ℝ} :
475
474
p.ball 0 r = p ⁻¹' (metric.ball 0 r) :=
@@ -523,7 +522,6 @@ begin
523
522
exact hr.trans (p.nonneg _),
524
523
end
525
524
526
- end norm_one_class
527
525
end module
528
526
end add_comm_group
529
527
end semi_normed_ring
@@ -662,7 +660,7 @@ lemma absorbent_ball (hx : ∥x∥ < r) : absorbent 𝕜 (metric.ball x r) :=
662
660
by { rw ←ball_norm_seminorm 𝕜, exact (norm_seminorm _ _).absorbent_ball hx }
663
661
664
662
/-- Balls at the origin are balanced. -/
665
- lemma balanced_ball_zero [norm_one_class 𝕜] : balanced 𝕜 (metric.ball (0 : E) r) :=
663
+ lemma balanced_ball_zero : balanced 𝕜 (metric.ball (0 : E) r) :=
666
664
by { rw ←ball_norm_seminorm 𝕜, exact (norm_seminorm _ _).balanced_ball_zero r }
667
665
668
666
end norm_seminorm
0 commit comments