This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 2 files changed +6
-2
lines changed Expand file tree Collapse file tree 2 files changed +6
-2
lines changed Original file line number Diff line number Diff line change @@ -5,6 +5,7 @@ Authors: Jeremy Avigad, Robert Y. Lewis
5
5
-/
6
6
import algebra.order.ring
7
7
import algebra.group_power.ring
8
+ import data.set.intervals.basic
8
9
9
10
/-!
10
11
# Lemmas about the interaction of power operations with order
Original file line number Diff line number Diff line change @@ -7,7 +7,6 @@ import algebra.char_zero.defs
7
7
import algebra.hom.ring
8
8
import algebra.order.group
9
9
import algebra.order.ring_lemmas
10
- import data.set.intervals.basic
11
10
12
11
/-!
13
12
# Ordered rings and semirings
@@ -471,7 +470,11 @@ lemma mul_lt_mul' (hac : a ≤ c) (hbd : b < d) (hb : 0 ≤ b) (hc : 0 < c) : a
471
470
lemma mul_self_lt_mul_self (h1 : 0 ≤ a) (h2 : a < b) : a * a < b * b :=
472
471
mul_lt_mul' h2.le h2 h1 $ h1.trans_lt h2
473
472
474
- lemma strict_mono_on_mul_self : strict_mono_on (λ x : α, x * x) (set.Ici 0 ) :=
473
+ -- In the next lemma, we used to write `set.Ici 0` instead of `{x | 0 ≤ x}`.
474
+ -- As this lemma is not used outside this file,
475
+ -- and the import for `set.Ici` is not otherwise needed until later,
476
+ -- we choose not to use it here.
477
+ lemma strict_mono_on_mul_self : strict_mono_on (λ x : α, x * x) {x | 0 ≤ x} :=
475
478
λ x hx y hy hxy, mul_self_lt_mul_self hx hxy
476
479
477
480
-- See Note [decidable namespace]
You can’t perform that action at this time.
0 commit comments