Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit ceecc88

Browse files
committed
chore(algebra/ring/order): avoid import of data.set.intervals (#16869)
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
1 parent 8ef4f3f commit ceecc88

File tree

2 files changed

+6
-2
lines changed

2 files changed

+6
-2
lines changed

src/algebra/group_power/order.lean

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@ Authors: Jeremy Avigad, Robert Y. Lewis
55
-/
66
import algebra.order.ring
77
import algebra.group_power.ring
8+
import data.set.intervals.basic
89

910
/-!
1011
# Lemmas about the interaction of power operations with order

src/algebra/order/ring.lean

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,6 @@ import algebra.char_zero.defs
77
import algebra.hom.ring
88
import algebra.order.group
99
import algebra.order.ring_lemmas
10-
import data.set.intervals.basic
1110

1211
/-!
1312
# Ordered rings and semirings
@@ -471,7 +470,11 @@ lemma mul_lt_mul' (hac : a ≤ c) (hbd : b < d) (hb : 0 ≤ b) (hc : 0 < c) : a
471470
lemma mul_self_lt_mul_self (h1 : 0 ≤ a) (h2 : a < b) : a * a < b * b :=
472471
mul_lt_mul' h2.le h2 h1 $ h1.trans_lt h2
473472

474-
lemma strict_mono_on_mul_self : strict_mono_on (λ x : α, x * x) (set.Ici 0) :=
473+
-- In the next lemma, we used to write `set.Ici 0` instead of `{x | 0 ≤ x}`.
474+
-- As this lemma is not used outside this file,
475+
-- and the import for `set.Ici` is not otherwise needed until later,
476+
-- we choose not to use it here.
477+
lemma strict_mono_on_mul_self : strict_mono_on (λ x : α, x * x) {x | 0 ≤ x} :=
475478
λ x hx y hy hxy, mul_self_lt_mul_self hx hxy
476479

477480
-- See Note [decidable namespace]

0 commit comments

Comments
 (0)