@@ -342,26 +342,24 @@ adjoin_simple_eq_bot_iff.mpr (coe_int_mem ⊥ n)
342
342
section adjoin_dim
343
343
open finite_dimensional vector_space
344
344
345
- @[simp] lemma dim_intermediate_field_eq_dim_subalgebra :
346
- dim F (adjoin F S).to_subalgebra = dim F (adjoin F S) := rfl
345
+ variables {K L : intermediate_field F E}
347
346
348
- @[simp] lemma findim_intermediate_field_eq_findim_subalgebra :
349
- findim F (adjoin F S).to_subalgebra = findim F (adjoin F S) := rfl
347
+ @[simp] lemma dim_eq_one_iff : dim F K = 1 ↔ K = ⊥ :=
348
+ by rw [← to_subalgebra_eq_iff, ← dim_eq_dim_subalgebra,
349
+ subalgebra.dim_eq_one_iff, bot_to_subalgebra]
350
350
351
- @[simp] lemma to_subalgebra_eq_iff {K L : intermediate_field F E} :
352
- K.to_subalgebra = L.to_subalgebra ↔ K = L :=
353
- by { rw [ subalgebra.ext_iff, intermediate_field.ext'_iff, set.ext_iff], refl }
351
+ @[simp] lemma findim_eq_one_iff : findim F K = 1 ↔ K = ⊥ :=
352
+ by rw [← to_subalgebra_eq_iff, ← findim_eq_findim_subalgebra,
353
+ subalgebra.findim_eq_one_iff, bot_to_subalgebra]
354
354
355
355
lemma dim_adjoin_eq_one_iff : dim F (adjoin F S) = 1 ↔ S ⊆ (⊥ : intermediate_field F E) :=
356
- by rw [←dim_intermediate_field_eq_dim_subalgebra, subalgebra.dim_eq_one_iff,
357
- ←bot_to_subalgebra, to_subalgebra_eq_iff, adjoin_eq_bot_iff]
356
+ iff.trans dim_eq_one_iff adjoin_eq_bot_iff
358
357
359
358
lemma dim_adjoin_simple_eq_one_iff : dim F F⟮α⟯ = 1 ↔ α ∈ (⊥ : intermediate_field F E) :=
360
- by { rw [ dim_adjoin_eq_one_iff] , exact set.singleton_subset_iff }
359
+ by { rw dim_adjoin_eq_one_iff, exact set.singleton_subset_iff }
361
360
362
361
lemma findim_adjoin_eq_one_iff : findim F (adjoin F S) = 1 ↔ S ⊆ (⊥ : intermediate_field F E) :=
363
- by rw [←findim_intermediate_field_eq_findim_subalgebra, subalgebra.findim_eq_one_iff,
364
- ←bot_to_subalgebra, to_subalgebra_eq_iff, adjoin_eq_bot_iff]
362
+ iff.trans findim_eq_one_iff adjoin_eq_bot_iff
365
363
366
364
lemma findim_adjoin_simple_eq_one_iff : findim F F⟮α⟯ = 1 ↔ α ∈ (⊥ : intermediate_field F E) :=
367
365
by { rw [findim_adjoin_eq_one_iff], exact set.singleton_subset_iff }
0 commit comments