@@ -35,88 +35,95 @@ section
35
35
36
36
namespace egorov
37
37
38
- /-- Given a sequence of functions `f` and a function `g`, `not_convergent_seq f g i j` is the
39
- set of elements such that `f k x` and `g x` are separated by at least `1 / (i + 1)` for some
38
+ /-- Given a sequence of functions `f` and a function `g`, `not_convergent_seq f g n j` is the
39
+ set of elements such that `f k x` and `g x` are separated by at least `1 / (n + 1)` for some
40
40
`k ≥ j`.
41
41
42
42
This definition is useful for Egorov's theorem. -/
43
- def not_convergent_seq (f : ℕ → α → β) (g : α → β) (i j : ℕ ) : set α :=
44
- ⋃ k (hk : j ≤ k), {x | (1 / (i + 1 : ℝ)) < dist (f k x) (g x)}
43
+ def not_convergent_seq [preorder ι] (f : ι → α → β) (g : α → β) (n : ℕ) ( j : ι ) : set α :=
44
+ ⋃ k (hk : j ≤ k), {x | (1 / (n + 1 : ℝ)) < dist (f k x) (g x)}
45
45
46
- variables {i j : ℕ } {s : set α} {ε : ℝ} {f : ℕ → α → β} {g : α → β}
46
+ variables {n : ℕ} { i j : ι } {s : set α} {ε : ℝ} {f : ι → α → β} {g : α → β}
47
47
48
- lemma mem_not_convergent_seq_iff {x : α} : x ∈ not_convergent_seq f g i j ↔
49
- ∃ k (hk : j ≤ k), (1 / (i + 1 : ℝ)) < dist (f k x) (g x) :=
48
+ lemma mem_not_convergent_seq_iff [preorder ι] {x : α} : x ∈ not_convergent_seq f g n j ↔
49
+ ∃ k (hk : j ≤ k), (1 / (n + 1 : ℝ)) < dist (f k x) (g x) :=
50
50
by { simp_rw [not_convergent_seq, mem_Union], refl }
51
51
52
- lemma not_convergent_seq_antitone :
53
- antitone (not_convergent_seq f g i ) :=
52
+ lemma not_convergent_seq_antitone [preorder ι] :
53
+ antitone (not_convergent_seq f g n ) :=
54
54
λ j k hjk, Union₂_mono' $ λ l hl, ⟨l, le_trans hjk hl, subset.rfl⟩
55
55
56
- lemma measure_inter_not_convergent_seq_eq_zero
57
- (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (i : ℕ) :
58
- μ (s ∩ ⋂ j, not_convergent_seq f g i j) = 0 :=
56
+ lemma measure_inter_not_convergent_seq_eq_zero [semilattice_sup ι] [nonempty ι]
57
+ (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (n : ℕ) :
58
+ μ (s ∩ ⋂ j, not_convergent_seq f g n j) = 0 :=
59
59
begin
60
60
simp_rw [metric.tendsto_at_top, ae_iff] at hfg,
61
61
rw [← nonpos_iff_eq_zero, ← hfg],
62
62
refine measure_mono (λ x, _),
63
63
simp only [mem_inter_eq, mem_Inter, ge_iff_le, mem_not_convergent_seq_iff],
64
64
push_neg,
65
65
rintro ⟨hmem, hx⟩,
66
- refine ⟨hmem, 1 / (i + 1 : ℝ), nat.one_div_pos_of_nat, λ N, _⟩,
66
+ refine ⟨hmem, 1 / (n + 1 : ℝ), nat.one_div_pos_of_nat, λ N, _⟩,
67
67
obtain ⟨n, hn₁, hn₂⟩ := hx N,
68
68
exact ⟨n, hn₁, hn₂.le⟩
69
69
end
70
70
71
71
variables [second_countable_topology β] [measurable_space β] [borel_space β]
72
72
73
- lemma not_convergent_seq_measurable_set
73
+ lemma not_convergent_seq_measurable_set [preorder ι] [encodable ι]
74
74
(hf : ∀ n, measurable[m] (f n)) (hg : measurable g) :
75
- measurable_set (not_convergent_seq f g i j) :=
75
+ measurable_set (not_convergent_seq f g n j) :=
76
76
measurable_set.Union (λ k, measurable_set.Union_Prop $ λ hk,
77
77
measurable_set_lt measurable_const $ (hf k).dist hg)
78
78
79
- lemma measure_not_convergent_seq_tendsto_zero
79
+ lemma measure_not_convergent_seq_tendsto_zero [semilattice_sup ι] [encodable ι]
80
80
(hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞)
81
- (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (i : ℕ) :
82
- tendsto (λ j, μ (s ∩ not_convergent_seq f g i j)) at_top (𝓝 0 ) :=
81
+ (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (n : ℕ) :
82
+ tendsto (λ j, μ (s ∩ not_convergent_seq f g n j)) at_top (𝓝 0 ) :=
83
83
begin
84
- rw [← measure_inter_not_convergent_seq_eq_zero hfg, inter_Inter],
85
- exact tendsto_measure_Inter (λ n, hsm.inter $ not_convergent_seq_measurable_set hf hg)
84
+ casesI is_empty_or_nonempty ι,
85
+ { have : (λ j, μ (s ∩ not_convergent_seq f g n j)) = λ j, 0 ,
86
+ by simp only [eq_iff_true_of_subsingleton],
87
+ rw this ,
88
+ exact tendsto_const_nhds, },
89
+ rw [← measure_inter_not_convergent_seq_eq_zero hfg n, inter_Inter],
90
+ refine tendsto_measure_Inter (λ n, hsm.inter $ not_convergent_seq_measurable_set hf hg)
86
91
(λ k l hkl, inter_subset_inter_right _ $ not_convergent_seq_antitone hkl)
87
- ⟨0 , (lt_of_le_of_lt (measure_mono $ inter_subset_left _ _) (lt_top_iff_ne_top.2 hs)).ne⟩
92
+ ⟨h.some , (lt_of_le_of_lt (measure_mono $ inter_subset_left _ _) (lt_top_iff_ne_top.2 hs)).ne⟩,
88
93
end
89
94
95
+ variables [semilattice_sup ι] [nonempty ι] [encodable ι]
96
+
90
97
lemma exists_not_convergent_seq_lt (hε : 0 < ε)
91
98
(hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞)
92
- (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (i : ℕ) :
93
- ∃ j : ℕ , μ (s ∩ not_convergent_seq f g i j) ≤ ennreal.of_real (ε * 2 ⁻¹ ^ i ) :=
99
+ (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (n : ℕ) :
100
+ ∃ j : ι , μ (s ∩ not_convergent_seq f g n j) ≤ ennreal.of_real (ε * 2 ⁻¹ ^ n ) :=
94
101
begin
95
102
obtain ⟨N, hN⟩ := (ennreal.tendsto_at_top ennreal.zero_ne_top).1
96
- (measure_not_convergent_seq_tendsto_zero hf hg hsm hs hfg i )
97
- (ennreal.of_real (ε * 2 ⁻¹ ^ i )) _,
103
+ (measure_not_convergent_seq_tendsto_zero hf hg hsm hs hfg n )
104
+ (ennreal.of_real (ε * 2 ⁻¹ ^ n )) _,
98
105
{ rw zero_add at hN,
99
106
exact ⟨N, (hN N le_rfl).2 ⟩ },
100
107
{ rw [gt_iff_lt, ennreal.of_real_pos],
101
- exact mul_pos hε (pow_pos (by norm_num) _) }
108
+ exact mul_pos hε (pow_pos (by norm_num) n), }
102
109
end
103
110
104
111
/-- Given some `ε > 0`, `not_convergent_seq_lt_index` provides the index such that
105
112
`not_convergent_seq` (intersected with a set of finite measure) has measure less than
106
- `ε * 2⁻¹ ^ i `.
113
+ `ε * 2⁻¹ ^ n `.
107
114
108
115
This definition is useful for Egorov's theorem. -/
109
116
def not_convergent_seq_lt_index (hε : 0 < ε)
110
117
(hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞)
111
- (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (i : ℕ) : ℕ :=
112
- classical.some $ exists_not_convergent_seq_lt hε hf hg hsm hs hfg i
118
+ (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (n : ℕ) : ι :=
119
+ classical.some $ exists_not_convergent_seq_lt hε hf hg hsm hs hfg n
113
120
114
121
lemma not_convergent_seq_lt_index_spec (hε : 0 < ε)
115
122
(hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞)
116
- (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (i : ℕ) :
117
- μ (s ∩ not_convergent_seq f g i (not_convergent_seq_lt_index hε hf hg hsm hs hfg i )) ≤
118
- ennreal.of_real (ε * 2 ⁻¹ ^ i ) :=
119
- classical.some_spec $ exists_not_convergent_seq_lt hε hf hg hsm hs hfg i
123
+ (hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) (n : ℕ) :
124
+ μ (s ∩ not_convergent_seq f g n (not_convergent_seq_lt_index hε hf hg hsm hs hfg n )) ≤
125
+ ennreal.of_real (ε * 2 ⁻¹ ^ n ) :=
126
+ classical.some_spec $ exists_not_convergent_seq_lt hε hf hg hsm hs hfg n
120
127
121
128
/-- Given some `ε > 0`, `Union_not_convergent_seq` is the union of `not_convergent_seq` with
122
129
specific indicies such that `Union_not_convergent_seq` has measure less equal than `ε`.
@@ -125,7 +132,7 @@ This definition is useful for Egorov's theorem. -/
125
132
def Union_not_convergent_seq (hε : 0 < ε)
126
133
(hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞)
127
134
(hfg : ∀ᵐ x ∂μ, x ∈ s → tendsto (λ n, f n x) at_top (𝓝 (g x))) : set α :=
128
- ⋃ i , s ∩ not_convergent_seq f g i (not_convergent_seq_lt_index (half_pos hε) hf hg hsm hs hfg i )
135
+ ⋃ n , s ∩ not_convergent_seq f g n (not_convergent_seq_lt_index (half_pos hε) hf hg hsm hs hfg n )
129
136
130
137
lemma Union_not_convergent_seq_measurable_set (hε : 0 < ε)
131
138
(hf : ∀ n, measurable (f n)) (hg : measurable g) (hsm : measurable_set s) (hs : μ s ≠ ∞)
@@ -181,13 +188,14 @@ end
181
188
182
189
end egorov
183
190
184
- variables [second_countable_topology β ] [measurable_space β ] [borel_space β ]
185
- {f : ℕ → α → β} {g : α → β} {s : set α}
186
-
191
+ variables [semilattice_sup ι ] [nonempty ι ] [encodable ι ]
192
+ [second_countable_topology β] [measurable_space β] [borel_space β]
193
+ {f : ι → α → β} {g : α → β} {s : set α}
187
194
188
- /-- **Egorov's theorem** : If `f : ℕ → α → β` is a sequence of measurable functions that converges
195
+ /-- **Egorov's theorem** : If `f : ι → α → β` is a sequence of measurable functions that converges
189
196
to `g : α → β` almost everywhere on a measurable set `s` of finite measure, then for all `ε > 0`,
190
197
there exists a subset `t ⊆ s` such that `μ t ≤ ε` and `f` converges to `g` uniformly on `s \ t`.
198
+ We require the index type `ι` to be encodable, and usually `ι = ℕ`.
191
199
192
200
In other words, a sequence of almost everywhere convergent functions converges uniformly except on
193
201
an arbitrarily small set. -/
0 commit comments