|
| 1 | +/- |
| 2 | +Copyright (c) 2021 Rémy Degenne. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Zhouhang Zhou, Yury Kudryashov |
| 5 | +-/ |
| 6 | + |
| 7 | +import measure_theory.l1_space |
| 8 | +import analysis.normed_space.indicator_function |
| 9 | + |
| 10 | +/-! # Functions integrable on a set and at a filter |
| 11 | +
|
| 12 | +We define `integrable_on f s μ := integrable f (μ.restrict s)` and prove theorems like |
| 13 | +`integrable_on_union : integrable_on f (s ∪ t) μ ↔ integrable_on f s μ ∧ integrable_on f t μ`. |
| 14 | +
|
| 15 | +Next we define a predicate `integrable_at_filter (f : α → E) (l : filter α) (μ : measure α)` |
| 16 | +saying that `f` is integrable at some set `s ∈ l` and prove that a measurable function is integrable |
| 17 | +at `l` with respect to `μ` provided that `f` is bounded above at `l ⊓ μ.ae` and `μ` is finite |
| 18 | +at `l`. |
| 19 | +
|
| 20 | +-/ |
| 21 | + |
| 22 | +noncomputable theory |
| 23 | +open set filter topological_space measure_theory function |
| 24 | +open_locale classical topological_space interval big_operators filter ennreal measure_theory |
| 25 | + |
| 26 | +variables {α β E F : Type*} [measurable_space α] |
| 27 | + |
| 28 | +section piecewise |
| 29 | + |
| 30 | +variables {μ : measure α} {s : set α} {f g : α → β} |
| 31 | + |
| 32 | +lemma piecewise_ae_eq_restrict (hs : measurable_set s) : piecewise s f g =ᵐ[μ.restrict s] f := |
| 33 | +begin |
| 34 | + rw [ae_restrict_eq hs], |
| 35 | + exact (piecewise_eq_on s f g).eventually_eq.filter_mono inf_le_right |
| 36 | +end |
| 37 | + |
| 38 | +lemma piecewise_ae_eq_restrict_compl (hs : measurable_set s) : |
| 39 | + piecewise s f g =ᵐ[μ.restrict sᶜ] g := |
| 40 | +begin |
| 41 | + rw [ae_restrict_eq hs.compl], |
| 42 | + exact (piecewise_eq_on_compl s f g).eventually_eq.filter_mono inf_le_right |
| 43 | +end |
| 44 | + |
| 45 | +end piecewise |
| 46 | + |
| 47 | +section indicator_function |
| 48 | + |
| 49 | +variables [has_zero β] {μ : measure α} {s : set α} {f : α → β} |
| 50 | + |
| 51 | +lemma indicator_ae_eq_restrict (hs : measurable_set s) : indicator s f =ᵐ[μ.restrict s] f := |
| 52 | +piecewise_ae_eq_restrict hs |
| 53 | + |
| 54 | +lemma indicator_ae_eq_restrict_compl (hs : measurable_set s) : indicator s f =ᵐ[μ.restrict sᶜ] 0 := |
| 55 | +piecewise_ae_eq_restrict_compl hs |
| 56 | + |
| 57 | +end indicator_function |
| 58 | + |
| 59 | +section |
| 60 | + |
| 61 | +variables [measurable_space β] {l l' : filter α} {f g : α → β} {μ ν : measure α} |
| 62 | + |
| 63 | +/-- A function `f` is measurable at filter `l` w.r.t. a measure `μ` if it is ae-measurable |
| 64 | +w.r.t. `μ.restrict s` for some `s ∈ l`. -/ |
| 65 | +def measurable_at_filter (f : α → β) (l : filter α) (μ : measure α . volume_tac) := |
| 66 | +∃ s ∈ l, ae_measurable f (μ.restrict s) |
| 67 | + |
| 68 | +@[simp] lemma measurable_at_bot {f : α → β} : measurable_at_filter f ⊥ μ := |
| 69 | +⟨∅, mem_bot_sets, by simp⟩ |
| 70 | + |
| 71 | +protected lemma measurable_at_filter.eventually (h : measurable_at_filter f l μ) : |
| 72 | + ∀ᶠ s in l.lift' powerset, ae_measurable f (μ.restrict s) := |
| 73 | +(eventually_lift'_powerset' $ λ s t, ae_measurable.mono_set).2 h |
| 74 | + |
| 75 | +protected lemma measurable_at_filter.filter_mono (h : measurable_at_filter f l μ) (h' : l' ≤ l) : |
| 76 | + measurable_at_filter f l' μ := |
| 77 | +let ⟨s, hsl, hs⟩ := h in ⟨s, h' hsl, hs⟩ |
| 78 | + |
| 79 | +protected lemma ae_measurable.measurable_at_filter (h : ae_measurable f μ) : |
| 80 | + measurable_at_filter f l μ := |
| 81 | +⟨univ, univ_mem_sets, by rwa measure.restrict_univ⟩ |
| 82 | + |
| 83 | +lemma ae_measurable.measurable_at_filter_of_mem {s} (h : ae_measurable f (μ.restrict s)) |
| 84 | + (hl : s ∈ l): |
| 85 | + measurable_at_filter f l μ := |
| 86 | +⟨s, hl, h⟩ |
| 87 | + |
| 88 | +protected lemma measurable.measurable_at_filter (h : measurable f) : |
| 89 | + measurable_at_filter f l μ := |
| 90 | +h.ae_measurable.measurable_at_filter |
| 91 | + |
| 92 | +end |
| 93 | + |
| 94 | +namespace measure_theory |
| 95 | + |
| 96 | +section normed_group |
| 97 | + |
| 98 | +lemma has_finite_integral_restrict_of_bounded [normed_group E] {f : α → E} {s : set α} |
| 99 | + {μ : measure α} {C} (hs : μ s < ∞) (hf : ∀ᵐ x ∂(μ.restrict s), ∥f x∥ ≤ C) : |
| 100 | + has_finite_integral f (μ.restrict s) := |
| 101 | +by haveI : finite_measure (μ.restrict s) := ⟨by rwa [measure.restrict_apply_univ]⟩; |
| 102 | + exact has_finite_integral_of_bounded hf |
| 103 | + |
| 104 | +variables [normed_group E] [measurable_space E] {f g : α → E} {s t : set α} {μ ν : measure α} |
| 105 | + |
| 106 | +/-- A function is `integrable_on` a set `s` if it is a measurable function and if the integral of |
| 107 | + its pointwise norm over `s` is less than infinity. -/ |
| 108 | +def integrable_on (f : α → E) (s : set α) (μ : measure α . volume_tac) : Prop := |
| 109 | +integrable f (μ.restrict s) |
| 110 | + |
| 111 | +lemma integrable_on.integrable (h : integrable_on f s μ) : |
| 112 | + integrable f (μ.restrict s) := |
| 113 | +h |
| 114 | + |
| 115 | +@[simp] lemma integrable_on_empty : integrable_on f ∅ μ := |
| 116 | +by simp [integrable_on, integrable_zero_measure] |
| 117 | + |
| 118 | +@[simp] lemma integrable_on_univ : integrable_on f univ μ ↔ integrable f μ := |
| 119 | +by rw [integrable_on, measure.restrict_univ] |
| 120 | + |
| 121 | +lemma integrable_on_zero : integrable_on (λ _, (0:E)) s μ := integrable_zero _ _ _ |
| 122 | + |
| 123 | +lemma integrable_on_const {C : E} : integrable_on (λ _, C) s μ ↔ C = 0 ∨ μ s < ∞ := |
| 124 | +integrable_const_iff.trans $ by rw [measure.restrict_apply_univ] |
| 125 | + |
| 126 | +lemma integrable_on.mono (h : integrable_on f t ν) (hs : s ⊆ t) (hμ : μ ≤ ν) : |
| 127 | + integrable_on f s μ := |
| 128 | +h.mono_measure $ measure.restrict_mono hs hμ |
| 129 | + |
| 130 | +lemma integrable_on.mono_set (h : integrable_on f t μ) (hst : s ⊆ t) : |
| 131 | + integrable_on f s μ := |
| 132 | +h.mono hst (le_refl _) |
| 133 | + |
| 134 | +lemma integrable_on.mono_measure (h : integrable_on f s ν) (hμ : μ ≤ ν) : |
| 135 | + integrable_on f s μ := |
| 136 | +h.mono (subset.refl _) hμ |
| 137 | + |
| 138 | +lemma integrable_on.mono_set_ae (h : integrable_on f t μ) (hst : s ≤ᵐ[μ] t) : |
| 139 | + integrable_on f s μ := |
| 140 | +h.integrable.mono_measure $ restrict_mono_ae hst |
| 141 | + |
| 142 | +lemma integrable.integrable_on (h : integrable f μ) : integrable_on f s μ := |
| 143 | +h.mono_measure $ measure.restrict_le_self |
| 144 | + |
| 145 | +lemma integrable.integrable_on' (h : integrable f (μ.restrict s)) : integrable_on f s μ := |
| 146 | +h |
| 147 | + |
| 148 | +lemma integrable_on.restrict (h : integrable_on f s μ) (hs : measurable_set s) : |
| 149 | + integrable_on f s (μ.restrict t) := |
| 150 | +by { rw [integrable_on, measure.restrict_restrict hs], exact h.mono_set (inter_subset_left _ _) } |
| 151 | + |
| 152 | +lemma integrable_on.left_of_union (h : integrable_on f (s ∪ t) μ) : integrable_on f s μ := |
| 153 | +h.mono_set $ subset_union_left _ _ |
| 154 | + |
| 155 | +lemma integrable_on.right_of_union (h : integrable_on f (s ∪ t) μ) : integrable_on f t μ := |
| 156 | +h.mono_set $ subset_union_right _ _ |
| 157 | + |
| 158 | +lemma integrable_on.union (hs : integrable_on f s μ) (ht : integrable_on f t μ) : |
| 159 | + integrable_on f (s ∪ t) μ := |
| 160 | +(hs.add_measure ht).mono_measure $ measure.restrict_union_le _ _ |
| 161 | + |
| 162 | +@[simp] lemma integrable_on_union : |
| 163 | + integrable_on f (s ∪ t) μ ↔ integrable_on f s μ ∧ integrable_on f t μ := |
| 164 | +⟨λ h, ⟨h.left_of_union, h.right_of_union⟩, λ h, h.1.union h.2⟩ |
| 165 | + |
| 166 | +@[simp] lemma integrable_on_finite_union {s : set β} (hs : finite s) |
| 167 | + {t : β → set α} : integrable_on f (⋃ i ∈ s, t i) μ ↔ ∀ i ∈ s, integrable_on f (t i) μ := |
| 168 | +begin |
| 169 | + apply hs.induction_on, |
| 170 | + { simp }, |
| 171 | + { intros a s ha hs hf, simp [hf, or_imp_distrib, forall_and_distrib] } |
| 172 | +end |
| 173 | + |
| 174 | +@[simp] lemma integrable_on_finset_union {s : finset β} {t : β → set α} : |
| 175 | + integrable_on f (⋃ i ∈ s, t i) μ ↔ ∀ i ∈ s, integrable_on f (t i) μ := |
| 176 | +integrable_on_finite_union s.finite_to_set |
| 177 | + |
| 178 | +lemma integrable_on.add_measure (hμ : integrable_on f s μ) (hν : integrable_on f s ν) : |
| 179 | + integrable_on f s (μ + ν) := |
| 180 | +by { delta integrable_on, rw measure.restrict_add, exact hμ.integrable.add_measure hν } |
| 181 | + |
| 182 | +@[simp] lemma integrable_on_add_measure : |
| 183 | + integrable_on f s (μ + ν) ↔ integrable_on f s μ ∧ integrable_on f s ν := |
| 184 | +⟨λ h, ⟨h.mono_measure (measure.le_add_right (le_refl _)), |
| 185 | + h.mono_measure (measure.le_add_left (le_refl _))⟩, |
| 186 | + λ h, h.1.add_measure h.2⟩ |
| 187 | + |
| 188 | +lemma ae_measurable_indicator_iff (hs : measurable_set s) : |
| 189 | + ae_measurable f (μ.restrict s) ↔ ae_measurable (indicator s f) μ := |
| 190 | +begin |
| 191 | + split, |
| 192 | + { assume h, |
| 193 | + refine ⟨indicator s (h.mk f), h.measurable_mk.indicator hs, _⟩, |
| 194 | + have A : s.indicator f =ᵐ[μ.restrict s] s.indicator (ae_measurable.mk f h) := |
| 195 | + (indicator_ae_eq_restrict hs).trans (h.ae_eq_mk.trans $ (indicator_ae_eq_restrict hs).symm), |
| 196 | + have B : s.indicator f =ᵐ[μ.restrict sᶜ] s.indicator (ae_measurable.mk f h) := |
| 197 | + (indicator_ae_eq_restrict_compl hs).trans (indicator_ae_eq_restrict_compl hs).symm, |
| 198 | + have : s.indicator f =ᵐ[μ.restrict s + μ.restrict sᶜ] s.indicator (ae_measurable.mk f h) := |
| 199 | + ae_add_measure_iff.2 ⟨A, B⟩, |
| 200 | + simpa only [hs, measure.restrict_add_restrict_compl] using this }, |
| 201 | + { assume h, |
| 202 | + exact (h.mono_measure measure.restrict_le_self).congr (indicator_ae_eq_restrict hs) } |
| 203 | +end |
| 204 | + |
| 205 | +lemma integrable_indicator_iff (hs : measurable_set s) : |
| 206 | + integrable (indicator s f) μ ↔ integrable_on f s μ := |
| 207 | +by simp [integrable_on, integrable, has_finite_integral, nnnorm_indicator_eq_indicator_nnnorm, |
| 208 | + ennreal.coe_indicator, lintegral_indicator _ hs, ae_measurable_indicator_iff hs] |
| 209 | + |
| 210 | +lemma integrable_on.indicator (h : integrable_on f s μ) (hs : measurable_set s) : |
| 211 | + integrable (indicator s f) μ := |
| 212 | +(integrable_indicator_iff hs).2 h |
| 213 | + |
| 214 | +lemma integrable.indicator (h : integrable f μ) (hs : measurable_set s) : |
| 215 | + integrable (indicator s f) μ := |
| 216 | +h.integrable_on.indicator hs |
| 217 | + |
| 218 | +/-- We say that a function `f` is *integrable at filter* `l` if it is integrable on some |
| 219 | +set `s ∈ l`. Equivalently, it is eventually integrable on `s` in `l.lift' powerset`. -/ |
| 220 | +def integrable_at_filter (f : α → E) (l : filter α) (μ : measure α . volume_tac) := |
| 221 | +∃ s ∈ l, integrable_on f s μ |
| 222 | + |
| 223 | +variables {l l' : filter α} |
| 224 | + |
| 225 | +protected lemma integrable_at_filter.eventually (h : integrable_at_filter f l μ) : |
| 226 | + ∀ᶠ s in l.lift' powerset, integrable_on f s μ := |
| 227 | +by { refine (eventually_lift'_powerset' $ λ s t hst ht, _).2 h, exact ht.mono_set hst } |
| 228 | + |
| 229 | +lemma integrable_at_filter.filter_mono (hl : l ≤ l') (hl' : integrable_at_filter f l' μ) : |
| 230 | + integrable_at_filter f l μ := |
| 231 | +let ⟨s, hs, hsf⟩ := hl' in ⟨s, hl hs, hsf⟩ |
| 232 | + |
| 233 | +lemma integrable_at_filter.inf_of_left (hl : integrable_at_filter f l μ) : |
| 234 | + integrable_at_filter f (l ⊓ l') μ := |
| 235 | +hl.filter_mono inf_le_left |
| 236 | + |
| 237 | +lemma integrable_at_filter.inf_of_right (hl : integrable_at_filter f l μ) : |
| 238 | + integrable_at_filter f (l' ⊓ l) μ := |
| 239 | +hl.filter_mono inf_le_right |
| 240 | + |
| 241 | +@[simp] lemma integrable_at_filter.inf_ae_iff {l : filter α} : |
| 242 | + integrable_at_filter f (l ⊓ μ.ae) μ ↔ integrable_at_filter f l μ := |
| 243 | +begin |
| 244 | + refine ⟨_, λ h, h.filter_mono inf_le_left⟩, |
| 245 | + rintros ⟨s, ⟨t, ht, u, hu, hs⟩, hf⟩, |
| 246 | + refine ⟨t, ht, _⟩, |
| 247 | + refine hf.integrable.mono_measure (λ v hv, _), |
| 248 | + simp only [measure.restrict_apply hv], |
| 249 | + refine measure_mono_ae (mem_sets_of_superset hu $ λ x hx, _), |
| 250 | + exact λ ⟨hv, ht⟩, ⟨hv, hs ⟨ht, hx⟩⟩ |
| 251 | +end |
| 252 | + |
| 253 | +alias integrable_at_filter.inf_ae_iff ↔ measure_theory.integrable_at_filter.of_inf_ae _ |
| 254 | + |
| 255 | +/-- If `μ` is a measure finite at filter `l` and `f` is a function such that its norm is bounded |
| 256 | +above at `l`, then `f` is integrable at `l`. -/ |
| 257 | +lemma measure.finite_at_filter.integrable_at_filter {l : filter α} [is_measurably_generated l] |
| 258 | + (hfm : measurable_at_filter f l μ) (hμ : μ.finite_at_filter l) |
| 259 | + (hf : l.is_bounded_under (≤) (norm ∘ f)) : |
| 260 | + integrable_at_filter f l μ := |
| 261 | +begin |
| 262 | + obtain ⟨C, hC⟩ : ∃ C, ∀ᶠ s in (l.lift' powerset), ∀ x ∈ s, ∥f x∥ ≤ C, |
| 263 | + from hf.imp (λ C hC, eventually_lift'_powerset.2 ⟨_, hC, λ t, id⟩), |
| 264 | + rcases (hfm.eventually.and (hμ.eventually.and hC)).exists_measurable_mem_of_lift' |
| 265 | + with ⟨s, hsl, hsm, hfm, hμ, hC⟩, |
| 266 | + refine ⟨s, hsl, ⟨hfm, has_finite_integral_restrict_of_bounded hμ _⟩⟩, |
| 267 | + exact C, |
| 268 | + rw [ae_restrict_eq hsm, eventually_inf_principal], |
| 269 | + exact eventually_of_forall hC |
| 270 | +end |
| 271 | + |
| 272 | +lemma measure.finite_at_filter.integrable_at_filter_of_tendsto_ae |
| 273 | + {l : filter α} [is_measurably_generated l] (hfm : measurable_at_filter f l μ) |
| 274 | + (hμ : μ.finite_at_filter l) {b} (hf : tendsto f (l ⊓ μ.ae) (𝓝 b)) : |
| 275 | + integrable_at_filter f l μ := |
| 276 | +(hμ.inf_of_left.integrable_at_filter (hfm.filter_mono inf_le_left) |
| 277 | + hf.norm.is_bounded_under_le).of_inf_ae |
| 278 | + |
| 279 | +alias measure.finite_at_filter.integrable_at_filter_of_tendsto_ae ← |
| 280 | + filter.tendsto.integrable_at_filter_ae |
| 281 | + |
| 282 | +lemma measure.finite_at_filter.integrable_at_filter_of_tendsto {l : filter α} |
| 283 | + [is_measurably_generated l] (hfm : measurable_at_filter f l μ) (hμ : μ.finite_at_filter l) |
| 284 | + {b} (hf : tendsto f l (𝓝 b)) : |
| 285 | + integrable_at_filter f l μ := |
| 286 | +hμ.integrable_at_filter hfm hf.norm.is_bounded_under_le |
| 287 | + |
| 288 | +alias measure.finite_at_filter.integrable_at_filter_of_tendsto ← filter.tendsto.integrable_at_filter |
| 289 | + |
| 290 | +variables [borel_space E] [second_countable_topology E] |
| 291 | + |
| 292 | +lemma integrable_add [opens_measurable_space E] {f g : α → E} |
| 293 | + (h : disjoint (support f) (support g)) (hf : measurable f) (hg : measurable g) : |
| 294 | + integrable (f + g) μ ↔ integrable f μ ∧ integrable g μ := |
| 295 | +begin |
| 296 | + refine ⟨λ hfg, ⟨_, _⟩, λ h, h.1.add h.2⟩, |
| 297 | + { rw ← indicator_add_eq_left h, exact hfg.indicator (measurable_set_support hf) }, |
| 298 | + { rw ← indicator_add_eq_right h, exact hfg.indicator (measurable_set_support hg) } |
| 299 | +end |
| 300 | + |
| 301 | +end normed_group |
| 302 | + |
| 303 | +end measure_theory |
| 304 | + |
| 305 | +open measure_theory asymptotics metric |
| 306 | + |
| 307 | +variables [measurable_space E] [normed_group E] |
| 308 | + |
| 309 | +/-- If a function is integrable at `𝓝[s] x` for each point `x` of a compact set `s`, then it is |
| 310 | +integrable on `s`. -/ |
| 311 | +lemma is_compact.integrable_on_of_nhds_within [topological_space α] {μ : measure α} {s : set α} |
| 312 | + (hs : is_compact s) {f : α → E} (hf : ∀ x ∈ s, integrable_at_filter f (𝓝[s] x) μ) : |
| 313 | + integrable_on f s μ := |
| 314 | +is_compact.induction_on hs integrable_on_empty (λ s t hst ht, ht.mono_set hst) |
| 315 | + (λ s t hs ht, hs.union ht) hf |
| 316 | + |
| 317 | +/-- A function which is continuous on a set `s` is almost everywhere measurable with respect to |
| 318 | +`μ.restrict s`. -/ |
| 319 | +lemma continuous_on.ae_measurable [topological_space α] [opens_measurable_space α] [borel_space E] |
| 320 | + {f : α → E} {s : set α} {μ : measure α} (hf : continuous_on f s) (hs : measurable_set s) : |
| 321 | + ae_measurable f (μ.restrict s) := |
| 322 | +begin |
| 323 | + refine ⟨indicator s f, _, (indicator_ae_eq_restrict hs).symm⟩, |
| 324 | + apply measurable_of_is_open, |
| 325 | + assume t ht, |
| 326 | + obtain ⟨u, u_open, hu⟩ : ∃ (u : set α), is_open u ∧ f ⁻¹' t ∩ s = u ∩ s := |
| 327 | + _root_.continuous_on_iff'.1 hf t ht, |
| 328 | + rw [indicator_preimage, set.ite, hu], |
| 329 | + exact (u_open.measurable_set.inter hs).union ((measurable_zero ht.measurable_set).diff hs) |
| 330 | +end |
| 331 | + |
| 332 | +lemma continuous_on.integrable_at_nhds_within |
| 333 | + [topological_space α] [opens_measurable_space α] [borel_space E] |
| 334 | + {μ : measure α} [locally_finite_measure μ] {a : α} {t : set α} {f : α → E} |
| 335 | + (hft : continuous_on f t) (ht : measurable_set t) (ha : a ∈ t) : |
| 336 | + integrable_at_filter f (𝓝[t] a) μ := |
| 337 | +by haveI : (𝓝[t] a).is_measurably_generated := ht.nhds_within_is_measurably_generated _; |
| 338 | +exact (hft a ha).integrable_at_filter ⟨_, self_mem_nhds_within, hft.ae_measurable ht⟩ |
| 339 | + (μ.finite_at_nhds_within _ _) |
| 340 | + |
| 341 | +/-- A function `f` continuous on a compact set `s` is integrable on this set with respect to any |
| 342 | +locally finite measure. -/ |
| 343 | +lemma continuous_on.integrable_on_compact |
| 344 | + [topological_space α] [opens_measurable_space α] [borel_space E] |
| 345 | + [t2_space α] {μ : measure α} [locally_finite_measure μ] |
| 346 | + {s : set α} (hs : is_compact s) {f : α → E} (hf : continuous_on f s) : |
| 347 | + integrable_on f s μ := |
| 348 | +hs.integrable_on_of_nhds_within $ λ x hx, hf.integrable_at_nhds_within hs.measurable_set hx |
| 349 | + |
| 350 | +/-- A continuous function `f` is integrable on any compact set with respect to any locally finite |
| 351 | +measure. -/ |
| 352 | +lemma continuous.integrable_on_compact |
| 353 | + [topological_space α] [opens_measurable_space α] [t2_space α] |
| 354 | + [borel_space E] {μ : measure α} [locally_finite_measure μ] {s : set α} |
| 355 | + (hs : is_compact s) {f : α → E} (hf : continuous f) : |
| 356 | + integrable_on f s μ := |
| 357 | +hf.continuous_on.integrable_on_compact hs |
| 358 | + |
| 359 | +/-- A continuous function with compact closure of the support is integrable on the whole space. -/ |
| 360 | +lemma continuous.integrable_of_compact_closure_support |
| 361 | + [topological_space α] [opens_measurable_space α] [t2_space α] [borel_space E] |
| 362 | + {μ : measure α} [locally_finite_measure μ] {f : α → E} (hf : continuous f) |
| 363 | + (hfc : is_compact (closure $ support f)) : |
| 364 | + integrable f μ := |
| 365 | +begin |
| 366 | + rw [← indicator_eq_self.2 (@subset_closure _ _ (support f)), |
| 367 | + integrable_indicator_iff is_closed_closure.measurable_set], |
| 368 | + { exact hf.integrable_on_compact hfc }, |
| 369 | + { apply_instance } |
| 370 | +end |
| 371 | + |
| 372 | +section |
| 373 | + |
| 374 | +variables {μ : measure α} {𝕜 : Type*} [is_R_or_C 𝕜] [normed_space 𝕜 E] |
| 375 | + [normed_group F] [normed_space 𝕜 F] [measurable_space F] [borel_space F] |
| 376 | + |
| 377 | +namespace continuous_linear_map |
| 378 | + |
| 379 | +lemma integrable_comp [opens_measurable_space E] {φ : α → E} (L : E →L[𝕜] F) |
| 380 | + (φ_int : integrable φ μ) : integrable (λ (a : α), L (φ a)) μ := |
| 381 | +((integrable.norm φ_int).const_mul ∥L∥).mono' (L.measurable.comp_ae_measurable φ_int.ae_measurable) |
| 382 | + (eventually_of_forall $ λ a, L.le_op_norm (φ a)) |
| 383 | + |
| 384 | +end continuous_linear_map |
| 385 | + |
| 386 | +end |
0 commit comments