@@ -115,43 +115,17 @@ begin
115
115
split,
116
116
{ exact measurable.add hf.1 hg.1 , },
117
117
simp_rw [pi.add_apply, ennreal.coe_rpow_of_nonneg _ hp0],
118
- -- step 1: use nnnorm_add_le
119
- calc ∫⁻ (a : α), ↑(nnnorm (f a + g a) ^ p) ∂μ ≤ ∫⁻ a, ↑((nnnorm (f a) + nnnorm (g a)) ^ p) ∂ μ :
120
- begin
121
- refine lintegral_mono_nnreal (λ a, _),
122
- exact nnreal.rpow_le_rpow (nnnorm_add_le (f a) (g a)) (le_of_lt hp0_lt)
123
- end
124
- -- step 2: use convexity of rpow
125
- ... ≤ ∫⁻ a, ↑((2 :nnreal)^(p-1 ) * (nnnorm (f a)) ^ p + (2 :nnreal)^(p-1 ) * (nnnorm (g a)) ^ p) ∂ μ :
126
- begin
127
- refine lintegral_mono_nnreal (λ a, _),
128
- have h_zero_lt_half_rpow : (0 : nnreal) < (1 / 2 ) ^ p,
129
- { rw [←nnreal.zero_rpow (ne_of_lt hp0_lt).symm, nnreal.rpow_lt_rpow_iff hp0_lt],
130
- simp [zero_lt_one], },
131
- have h_rw : (1 / 2 ) ^ p * (2 :nnreal) ^ (p - 1 ) = 1 / 2 ,
132
- { rw [nnreal.rpow_sub two_ne_zero, nnreal.div_rpow, nnreal.one_rpow, nnreal.rpow_one,
133
- ←mul_div_assoc, one_div, inv_mul_cancel],
134
- simp [two_ne_zero], },
135
- rw [←mul_le_mul_left h_zero_lt_half_rpow, mul_add, ← mul_assoc, ← mul_assoc, h_rw,
136
- ←nnreal.mul_rpow, mul_add],
137
- refine nnreal.rpow_arith_mean_le_arith_mean2_rpow (1 /2 : nnreal) (1 /2 : nnreal)
138
- (nnnorm (f a)) (nnnorm (g a)) _ hp1,
139
- rw [nnreal.div_add_div_same, one_add_one_eq_two, nnreal.div_self two_ne_zero]
140
- end
141
- -- step 3: use hypotheses hf and hg
142
- ... < ⊤ :
143
- begin
144
- simp_rw [ennreal.coe_add, ennreal.coe_mul, ←ennreal.coe_rpow_of_nonneg _ hp0],
145
- rw [lintegral_add, lintegral_const_mul, lintegral_const_mul, ennreal.add_lt_top],
146
- { simp [ennreal.mul_lt_top_iff, hf.2 , hg.2 ] },
147
- -- finish by proving the measurability of all functions involved
148
- { exact hg.left.nnnorm.ennreal_coe.ennreal_rpow_const, },
149
- { exact hf.left.nnnorm.ennreal_coe.ennreal_rpow_const, },
150
- { exact (ennreal.continuous_const_mul (by simp)).measurable.comp
151
- hf.left.nnnorm.ennreal_coe.ennreal_rpow_const, },
152
- { exact (ennreal.continuous_const_mul (by simp)).measurable.comp
153
- hg.left.nnnorm.ennreal_coe.ennreal_rpow_const },
154
- end
118
+ have h_nnnorm_add_le : ∫⁻ (a : α), ↑(nnnorm (f a + g a) ^ p) ∂μ
119
+ ≤ ∫⁻ a, ↑((nnnorm (f a) + nnnorm (g a)) ^ p) ∂μ,
120
+ { refine lintegral_mono_nnreal (λ a, _),
121
+ exact nnreal.rpow_le_rpow (nnnorm_add_le (f a) (g a)) (le_of_lt hp0_lt), },
122
+ refine lt_of_le_of_lt h_nnnorm_add_le _,
123
+ simp_rw [←ennreal.coe_rpow_of_nonneg _ hp0, ennreal.coe_add],
124
+ let f_nnnorm := (λ a : α, (nnnorm (f a) : ennreal)),
125
+ let g_nnnorm := (λ a : α, (nnnorm (g a) : ennreal)),
126
+ change ∫⁻ (a : α), ((f_nnnorm + g_nnnorm) a) ^ p ∂μ < ⊤,
127
+ exact ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top hf.1 .nnnorm.ennreal_coe hf.2
128
+ hg.1 .nnnorm.ennreal_coe hg.2 hp1,
155
129
end
156
130
157
131
end borel_space
0 commit comments