@@ -201,7 +201,7 @@ def tensor_product : Type* :=
201
201
variables {R}
202
202
203
203
localized " infix ` ⊗ `:100 := tensor_product _" in tensor_product
204
- localized " notation M ` ⊗[`:100 R `] ` N:100 := tensor_product R M N" in tensor_product
204
+ localized " notation M ` ⊗[`:100 R `] `:0 N:100 := tensor_product R M N" in tensor_product
205
205
206
206
namespace tensor_product
207
207
@@ -221,7 +221,7 @@ def tmul (m : M) (n : N) : M ⊗[R] N := add_con.mk' _ $ free_add_monoid.of (m,
221
221
variables {R}
222
222
223
223
infix ` ⊗ₜ `:100 := tmul _
224
- notation x ` ⊗ₜ[`:100 R `] ` y := tmul R x y
224
+ notation x ` ⊗ₜ[`:100 R `] `: 0 y: 100 := tmul R x y
225
225
226
226
@[elab_as_eliminator]
227
227
protected theorem induction_on
@@ -234,15 +234,15 @@ add_con.induction_on z $ λ x, free_add_monoid.rec_on x C0 $ λ ⟨m, n⟩ y ih,
234
234
by { rw add_con.coe_add, exact Cp C1 ih }
235
235
236
236
variables (M)
237
- @[simp] lemma zero_tmul (n : N) : (0 ⊗ₜ n : M ⊗ [R] N) = 0 :=
237
+ @[simp] lemma zero_tmul (n : N) : (0 : M) ⊗ₜ [R] n = 0 :=
238
238
quotient.sound' $ add_con_gen.rel.of _ _ $ eqv.of_zero_left _
239
239
variables {M}
240
240
241
241
lemma add_tmul (m₁ m₂ : M) (n : N) : (m₁ + m₂) ⊗ₜ n = m₁ ⊗ₜ n + m₂ ⊗ₜ[R] n :=
242
242
eq.symm $ quotient.sound' $ add_con_gen.rel.of _ _ $ eqv.of_add_left _ _ _
243
243
244
244
variables (N)
245
- @[simp] lemma tmul_zero (m : M) : ( m ⊗ₜ 0 : M ⊗[R] N) = 0 :=
245
+ @[simp] lemma tmul_zero (m : M) : m ⊗ₜ[R] ( 0 : N) = 0 :=
246
246
quotient.sound' $ add_con_gen.rel.of _ _ $ eqv.of_zero_right _
247
247
variables {N}
248
248
@@ -295,7 +295,7 @@ protected theorem smul_add (r : R') (x y : M ⊗[R] N) :
295
295
add_monoid_hom.map_add _ _ _
296
296
297
297
theorem smul_tmul' (r : R') (m : M) (n : N) :
298
- r • (m ⊗ₜ n : M ⊗ [R] N ) = (r • m) ⊗ₜ n :=
298
+ r • (m ⊗ₜ[R] n ) = (r • m) ⊗ₜ n :=
299
299
rfl
300
300
301
301
-- Most of the time we want the instance below this one, which is easier for typeclass resolution
@@ -336,18 +336,18 @@ variables {R M N}
336
336
@[simp] lemma mk_apply (m : M) (n : N) : mk R M N m n = m ⊗ₜ n := rfl
337
337
338
338
lemma ite_tmul (x₁ : M) (x₂ : N) (P : Prop ) [decidable P] :
339
- (( if P then x₁ else 0 ) ⊗ₜ[R] x₂) = if P then ( x₁ ⊗ₜ x₂) else 0 :=
339
+ (if P then x₁ else 0 ) ⊗ₜ[R] x₂ = if P then x₁ ⊗ₜ x₂ else 0 :=
340
340
by { split_ifs; simp }
341
341
342
342
lemma tmul_ite (x₁ : M) (x₂ : N) (P : Prop ) [decidable P] :
343
- ( x₁ ⊗ₜ[R] (if P then x₂ else 0 )) = if P then ( x₁ ⊗ₜ x₂) else 0 :=
343
+ x₁ ⊗ₜ[R] (if P then x₂ else 0 ) = if P then x₁ ⊗ₜ x₂ else 0 :=
344
344
by { split_ifs; simp }
345
345
346
346
section
347
347
open_locale big_operators
348
348
349
349
lemma sum_tmul {α : Type *} (s : finset α) (m : α → M) (n : N) :
350
- (( ∑ a in s, m a) ⊗ₜ[R] n) = ∑ a in s, m a ⊗ₜ[R] n :=
350
+ (∑ a in s, m a) ⊗ₜ[R] n = ∑ a in s, m a ⊗ₜ[R] n :=
351
351
begin
352
352
classical,
353
353
induction s using finset.induction with a s has ih h,
@@ -356,7 +356,7 @@ begin
356
356
end
357
357
358
358
lemma tmul_sum (m : M) {α : Type *} (s : finset α) (n : α → N) :
359
- ( m ⊗ₜ[R] (∑ a in s, n a) ) = ∑ a in s, m ⊗ₜ[R] n a :=
359
+ m ⊗ₜ[R] (∑ a in s, n a) = ∑ a in s, m ⊗ₜ[R] n a :=
360
360
begin
361
361
classical,
362
362
induction s using finset.induction with a s has ih h,
0 commit comments