Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit d246177

Browse files
committed
chore(analysis/locally_convex/with_seminorms): fix namespaces for dot-notation (#16771)
Some lemmas where in the wrong namespaces.
1 parent ebe6bda commit d246177

File tree

3 files changed

+10
-11
lines changed

3 files changed

+10
-11
lines changed

src/analysis/locally_convex/weak_dual.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -135,6 +135,6 @@ variables [normed_field 𝕜] [add_comm_group E] [module 𝕜 E] [add_comm_group
135135
variables [nonempty ι] [normed_space ℝ 𝕜] [module ℝ E] [is_scalar_tower ℝ 𝕜 E]
136136

137137
instance {B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜} : locally_convex_space ℝ (weak_bilin B) :=
138-
seminorm_family.to_locally_convex_space (B.weak_bilin_with_seminorms)
138+
(B.weak_bilin_with_seminorms).to_locally_convex_space
139139

140140
end locally_convex

src/analysis/locally_convex/with_seminorms.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -271,7 +271,7 @@ variables [normed_field 𝕜] [add_comm_group E] [module 𝕜 E] [nonempty ι]
271271
structure with_seminorms (p : seminorm_family 𝕜 E ι) [t : topological_space E] : Prop :=
272272
(topology_eq_with_seminorms : t = p.module_filter_basis.topology)
273273

274-
lemma seminorm_family.with_seminorms_eq {p : seminorm_family 𝕜 E ι} [t : topological_space E]
274+
lemma with_seminorms.with_seminorms_eq {p : seminorm_family 𝕜 E ι} [t : topological_space E]
275275
(hp : with_seminorms p) : t = p.module_filter_basis.topology := hp.1
276276

277277
variables [topological_space E]
@@ -493,7 +493,7 @@ variables [nonempty ι] [normed_field 𝕜] [normed_space ℝ 𝕜]
493493
[add_comm_group E] [module 𝕜 E] [module ℝ E] [is_scalar_tower ℝ 𝕜 E] [topological_space E]
494494
[topological_add_group E]
495495

496-
lemma seminorm_family.to_locally_convex_space {p : seminorm_family 𝕜 E ι} (hp : with_seminorms p) :
496+
lemma with_seminorms.to_locally_convex_space {p : seminorm_family 𝕜 E ι} (hp : with_seminorms p) :
497497
locally_convex_space ℝ E :=
498498
begin
499499
apply of_basis_zero ℝ E id (λ s, s ∈ p.basis_sets),
@@ -516,7 +516,7 @@ variables (𝕜) [normed_field 𝕜] [normed_space ℝ 𝕜] [seminormed_add_com
516516
slightly weaker instance version. -/
517517
lemma normed_space.to_locally_convex_space' [normed_space 𝕜 E] [module ℝ E]
518518
[is_scalar_tower ℝ 𝕜 E] : locally_convex_space ℝ E :=
519-
seminorm_family.to_locally_convex_space (norm_with_seminorms 𝕜 E)
519+
(norm_with_seminorms 𝕜 E).to_locally_convex_space
520520

521521
/-- See `normed_space.to_locally_convex_space'` for a slightly stronger version which is not an
522522
instance. -/

src/analysis/schwartz_space.lean

Lines changed: 6 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ natural numbers `k` and `n` we have uniform bounds `∥x∥^k * ∥iterated_fder
2222
This approach completely avoids using partial derivatives as well as polynomials.
2323
We construct the topology on the Schwartz space by a family of seminorms, which are the best
2424
constants in the above estimates, which is by abstract theory from
25-
`seminorm_family.module_filter_basis` and `seminorm_family.to_locally_convex_space` turns the
25+
`seminorm_family.module_filter_basis` and `with_seminorms.to_locally_convex_space` turns the
2626
Schwartz space into a locally convex topological vector space.
2727
2828
## Main definitions
@@ -375,22 +375,21 @@ variables {𝕜 E F}
375375

376376
instance : has_continuous_smul 𝕜 𝓢(E, F) :=
377377
begin
378-
rw seminorm_family.with_seminorms_eq (schwartz_with_seminorms 𝕜 E F),
378+
rw (schwartz_with_seminorms 𝕜 E F).with_seminorms_eq,
379379
exact (schwartz_seminorm_family 𝕜 E F).module_filter_basis.has_continuous_smul,
380380
end
381381

382382
instance : topological_add_group 𝓢(E, F) :=
383-
(schwartz_seminorm_family ℝ E F).module_filter_basis.to_add_group_filter_basis
384-
.is_topological_add_group
383+
(schwartz_seminorm_family ℝ E F).add_group_filter_basis.is_topological_add_group
385384

386385
instance : uniform_space 𝓢(E, F) :=
387-
(schwartz_seminorm_family ℝ E F).module_filter_basis.to_add_group_filter_basis.uniform_space
386+
(schwartz_seminorm_family ℝ E F).add_group_filter_basis.uniform_space
388387

389388
instance : uniform_add_group 𝓢(E, F) :=
390-
(schwartz_seminorm_family ℝ E F).module_filter_basis.to_add_group_filter_basis.uniform_add_group
389+
(schwartz_seminorm_family ℝ E F).add_group_filter_basis.uniform_add_group
391390

392391
instance : locally_convex_space ℝ 𝓢(E, F) :=
393-
seminorm_family.to_locally_convex_space (schwartz_with_seminorms ℝ E F)
392+
(schwartz_with_seminorms ℝ E F).to_locally_convex_space
394393

395394
end topology
396395

0 commit comments

Comments
 (0)