@@ -22,7 +22,7 @@ natural numbers `k` and `n` we have uniform bounds `∥x∥^k * ∥iterated_fder
22
22
This approach completely avoids using partial derivatives as well as polynomials.
23
23
We construct the topology on the Schwartz space by a family of seminorms, which are the best
24
24
constants in the above estimates, which is by abstract theory from
25
- `seminorm_family.module_filter_basis` and `seminorm_family .to_locally_convex_space` turns the
25
+ `seminorm_family.module_filter_basis` and `with_seminorms .to_locally_convex_space` turns the
26
26
Schwartz space into a locally convex topological vector space.
27
27
28
28
## Main definitions
@@ -375,22 +375,21 @@ variables {𝕜 E F}
375
375
376
376
instance : has_continuous_smul 𝕜 𝓢(E, F) :=
377
377
begin
378
- rw seminorm_family.with_seminorms_eq (schwartz_with_seminorms 𝕜 E F),
378
+ rw (schwartz_with_seminorms 𝕜 E F).with_seminorms_eq ,
379
379
exact (schwartz_seminorm_family 𝕜 E F).module_filter_basis.has_continuous_smul,
380
380
end
381
381
382
382
instance : topological_add_group 𝓢(E, F) :=
383
- (schwartz_seminorm_family ℝ E F).module_filter_basis.to_add_group_filter_basis
384
- .is_topological_add_group
383
+ (schwartz_seminorm_family ℝ E F).add_group_filter_basis.is_topological_add_group
385
384
386
385
instance : uniform_space 𝓢(E, F) :=
387
- (schwartz_seminorm_family ℝ E F).module_filter_basis.to_add_group_filter_basis .uniform_space
386
+ (schwartz_seminorm_family ℝ E F).add_group_filter_basis .uniform_space
388
387
389
388
instance : uniform_add_group 𝓢(E, F) :=
390
- (schwartz_seminorm_family ℝ E F).module_filter_basis.to_add_group_filter_basis .uniform_add_group
389
+ (schwartz_seminorm_family ℝ E F).add_group_filter_basis .uniform_add_group
391
390
392
391
instance : locally_convex_space ℝ 𝓢(E, F) :=
393
- seminorm_family.to_locally_convex_space (schwartz_with_seminorms ℝ E F)
392
+ (schwartz_with_seminorms ℝ E F).to_locally_convex_space
394
393
395
394
end topology
396
395
0 commit comments