This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 2 files changed +21
-0
lines changed
topology/sheaves/sheaf_condition Expand file tree Collapse file tree 2 files changed +21
-0
lines changed Original file line number Diff line number Diff line change @@ -168,6 +168,18 @@ def Sheaf_equiv_SheafOfTypes : Sheaf J (Type w) ≌ SheafOfTypes J :=
168
168
instance : inhabited (Sheaf (⊥ : grothendieck_topology C) (Type w)) :=
169
169
⟨(Sheaf_equiv_SheafOfTypes _).inverse.obj (default _)⟩
170
170
171
+ variables {J} {A}
172
+
173
+ /-- If the empty sieve is a cover of `X`, then `F(X)` is terminal. -/
174
+ def Sheaf.is_terminal_of_bot_cover (F : Sheaf J A) (X : C) (H : ⊥ ∈ J X) :
175
+ is_terminal (F.1 .obj (op X)) :=
176
+ begin
177
+ apply_with is_terminal.of_unique { instances := ff },
178
+ intro Y,
179
+ choose t h using F.2 Y _ H (by tidy) (by tidy),
180
+ exact ⟨⟨t⟩, λ a, h.2 a (by tidy)⟩
181
+ end
182
+
171
183
end category_theory
172
184
173
185
namespace category_theory
Original file line number Diff line number Diff line change @@ -514,6 +514,15 @@ variables {C : Type u} [category.{v} C] [limits.has_products C]
514
514
variables {X : Top.{v}} {ι : Type *} {B : ι → opens X}
515
515
variables (F : presheaf C X) (F' : sheaf C X) (h : opens.is_basis (set.range B))
516
516
517
+ /-- The empty component of a sheaf is terminal -/
518
+ def is_terminal_of_empty (F : sheaf C X) : limits.is_terminal (F.val.obj (op ∅)) :=
519
+ ((presheaf.Sheaf_spaces_to_sheaf_sites C X).obj F).is_terminal_of_bot_cover ∅ (by tidy)
520
+
521
+ /-- A variant of `is_terminal_of_empty` that is easier to `apply`. -/
522
+ def is_terminal_of_eq_empty (F : X.sheaf C) {U : opens X} (h : U = ∅) :
523
+ limits.is_terminal (F.val.obj (op U)) :=
524
+ by convert F.is_terminal_of_empty
525
+
517
526
/-- If a family `B` of open sets forms a basis of the topology on `X`, and if `F'`
518
527
is a sheaf on `X`, then a homomorphism between a presheaf `F` on `X` and `F'`
519
528
is equivalent to a homomorphism between their restrictions to the indexing type
You can’t perform that action at this time.
0 commit comments