Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit d4e27d0

Browse files
committed
chore(topology/separation): move a lemma, golf (#12896)
* move `t0_space_of_injective_of_continuous` up; * add `embedding.t0_space`, use it for `subtype.t0_space`.
1 parent e968b6d commit d4e27d0

File tree

1 file changed

+10
-11
lines changed

1 file changed

+10
-11
lines changed

src/topology/separation.lean

Lines changed: 10 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -262,9 +262,17 @@ begin
262262
exact ⟨x, hx⟩
263263
end
264264

265+
lemma t0_space_of_injective_of_continuous [topological_space β] {f : α → β}
266+
(hf : function.injective f) (hf' : continuous f) [t0_space β] : t0_space α :=
267+
⟨λ x y hxy, let ⟨U, hU, hxyU⟩ := t0_space.t0 (f x) (f y) (hf.ne hxy) in
268+
⟨f ⁻¹' U, hU.preimage hf', hxyU⟩⟩
269+
270+
protected lemma embedding.t0_space [topological_space β] [t0_space β] {f : α → β}
271+
(hf : embedding f) : t0_space α :=
272+
t0_space_of_injective_of_continuous hf.inj hf.continuous
273+
265274
instance subtype.t0_space [t0_space α] {p : α → Prop} : t0_space (subtype p) :=
266-
⟨λ x y hxy, let ⟨U, hU, hxyU⟩ := t0_space.t0 (x:α) y ((not_congr subtype.ext_iff_val).1 hxy) in
267-
⟨(coe : subtype p → α) ⁻¹' U, is_open_induced hU, hxyU⟩⟩
275+
embedding_subtype_coe.t0_space
268276

269277
theorem t0_space_iff_or_not_mem_closure (α : Type u) [topological_space α] :
270278
t0_space α ↔ (∀ a b : α, (a ≠ b) → (a ∉ closure ({b} : set α) ∨ b ∉ closure ({a} : set α))) :=
@@ -281,15 +289,6 @@ begin
281289
or.inl ⟨h', not_not.mpr (subset_closure (set.mem_singleton b))⟩⟩ } }
282290
end
283291

284-
lemma t0_space_of_injective_of_continuous {α β : Type u} [topological_space α] [topological_space β]
285-
{f : α → β} (hf : function.injective f) (hf' : continuous f) [t0_space β] : t0_space α :=
286-
begin
287-
constructor,
288-
intros x y h,
289-
obtain ⟨U, hU, e⟩ := t0_space.t0 _ _ (hf.ne h),
290-
exact ⟨f ⁻¹' U, hf'.1 U hU, e⟩
291-
end
292-
293292
/-- A T₁ space, also known as a Fréchet space, is a topological space
294293
where every singleton set is closed. Equivalently, for every pair
295294
`x ≠ y`, there is an open set containing `x` and not `y`. -/

0 commit comments

Comments
 (0)