@@ -262,9 +262,17 @@ begin
262
262
exact ⟨x, hx⟩
263
263
end
264
264
265
+ lemma t0_space_of_injective_of_continuous [topological_space β] {f : α → β}
266
+ (hf : function.injective f) (hf' : continuous f) [t0_space β] : t0_space α :=
267
+ ⟨λ x y hxy, let ⟨U, hU, hxyU⟩ := t0_space.t0 (f x) (f y) (hf.ne hxy) in
268
+ ⟨f ⁻¹' U, hU.preimage hf', hxyU⟩⟩
269
+
270
+ protected lemma embedding.t0_space [topological_space β] [t0_space β] {f : α → β}
271
+ (hf : embedding f) : t0_space α :=
272
+ t0_space_of_injective_of_continuous hf.inj hf.continuous
273
+
265
274
instance subtype.t0_space [t0_space α] {p : α → Prop } : t0_space (subtype p) :=
266
- ⟨λ x y hxy, let ⟨U, hU, hxyU⟩ := t0_space.t0 (x:α) y ((not_congr subtype.ext_iff_val).1 hxy) in
267
- ⟨(coe : subtype p → α) ⁻¹' U, is_open_induced hU, hxyU⟩⟩
275
+ embedding_subtype_coe.t0_space
268
276
269
277
theorem t0_space_iff_or_not_mem_closure (α : Type u) [topological_space α] :
270
278
t0_space α ↔ (∀ a b : α, (a ≠ b) → (a ∉ closure ({b} : set α) ∨ b ∉ closure ({a} : set α))) :=
@@ -281,15 +289,6 @@ begin
281
289
or.inl ⟨h', not_not.mpr (subset_closure (set.mem_singleton b))⟩⟩ } }
282
290
end
283
291
284
- lemma t0_space_of_injective_of_continuous {α β : Type u} [topological_space α] [topological_space β]
285
- {f : α → β} (hf : function.injective f) (hf' : continuous f) [t0_space β] : t0_space α :=
286
- begin
287
- constructor,
288
- intros x y h,
289
- obtain ⟨U, hU, e⟩ := t0_space.t0 _ _ (hf.ne h),
290
- exact ⟨f ⁻¹' U, hf'.1 U hU, e⟩
291
- end
292
-
293
292
/-- A T₁ space, also known as a Fréchet space, is a topological space
294
293
where every singleton set is closed. Equivalently, for every pair
295
294
`x ≠ y`, there is an open set containing `x` and not `y`. -/
0 commit comments