Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit d5a3e8c

Browse files
committed
feat(ring_theory/derivation): add 3 lemmas (#10996)
Add `map_smul_of_tower`, `map_coe_nat`, and `map_coe_int`.
1 parent c4268a8 commit d5a3e8c

File tree

1 file changed

+11
-0
lines changed

1 file changed

+11
-0
lines changed

src/ring_theory/derivation.lean

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -86,12 +86,20 @@ protected lemma map_zero : D 0 = 0 := map_zero D
8686
@[simp] lemma map_smul : D (r • a) = r • D a := D.to_linear_map.map_smul r a
8787
@[simp] lemma leibniz : D (a * b) = a • D b + b • D a := D.leibniz' _ _
8888

89+
@[simp, priority 900] lemma map_smul_of_tower {S : Type*} [has_scalar S A] [has_scalar S M]
90+
[linear_map.compatible_smul A M S R] (D : derivation R A M) (r : S) (a : A) :
91+
D (r • a) = r • D a :=
92+
D.to_linear_map.map_smul_of_tower r a
93+
8994
@[simp] lemma map_one_eq_zero : D 1 = 0 := D.map_one_eq_zero'
9095

9196
@[simp] lemma map_algebra_map : D (algebra_map R A r) = 0 :=
9297
by rw [←mul_one r, ring_hom.map_mul, ring_hom.map_one, ←smul_def, map_smul, map_one_eq_zero,
9398
smul_zero]
9499

100+
@[simp] lemma map_coe_nat (n : ℕ) : D (n : A) = 0 :=
101+
by rw [← nsmul_one, D.map_smul_of_tower n, map_one_eq_zero, smul_zero]
102+
95103
@[simp] lemma leibniz_pow (n : ℕ) : D (a ^ n) = n • a ^ (n - 1) • D a :=
96104
begin
97105
induction n with n ihn,
@@ -237,6 +245,9 @@ variables (D : derivation R A M) {D1 D2 : derivation R A M} (r : R) (a b : A)
237245
protected lemma map_neg : D (-a) = -D a := map_neg D a
238246
protected lemma map_sub : D (a - b) = D a - D b := map_sub D a b
239247

248+
@[simp] lemma map_coe_int (n : ℤ) : D (n : A) = 0 :=
249+
by rw [← zsmul_one, D.map_smul_of_tower n, map_one_eq_zero, smul_zero]
250+
240251
lemma leibniz_of_mul_eq_one {a b : A} (h : a * b = 1) : D a = -a^2 • D b :=
241252
begin
242253
rw neg_smul,

0 commit comments

Comments
 (0)