@@ -38,7 +38,7 @@ a.e. disjoint and cover the whole space. -/
38
38
[has_vadd G α] [measurable_space α] (s : set α) (μ : measure α . volume_tac) : Prop :=
39
39
(null_measurable_set : null_measurable_set s μ)
40
40
(ae_covers : ∀ᵐ x ∂μ, ∃ g : G, g +ᵥ x ∈ s)
41
- (ae_disjoint : ∀ g ≠ ( 0 : G), ae_disjoint μ ( g +ᵥ s) s)
41
+ (ae_disjoint : pairwise $ ae_disjoint μ on λ g : G, g +ᵥ s)
42
42
43
43
/-- A measurable set `s` is a *fundamental domain* for an action of a group `G` on a measurable
44
44
space `α` with respect to a measure `α` if the sets `g • s`, `g : G`, are pairwise a.e. disjoint and
@@ -48,12 +48,13 @@ structure is_fundamental_domain (G : Type*) {α : Type*} [has_one G] [has_smul G
48
48
[measurable_space α] (s : set α) (μ : measure α . volume_tac) : Prop :=
49
49
(null_measurable_set : null_measurable_set s μ)
50
50
(ae_covers : ∀ᵐ x ∂μ, ∃ g : G, g • x ∈ s)
51
- (ae_disjoint : ∀ g ≠ ( 1 : G), ae_disjoint μ ( g • s) s)
51
+ (ae_disjoint : pairwise $ ae_disjoint μ on λ g : G, g • s)
52
52
53
- namespace is_fundamental_domain
53
+ variables {G H α β E : Type *}
54
54
55
- variables {G H α β E : Type *} [group G] [group H] [mul_action G α] [measurable_space α]
56
- [mul_action H β] [measurable_space β] [normed_add_comm_group E] {s t : set α} {μ : measure α}
55
+ namespace is_fundamental_domain
56
+ variables [group G] [group H] [mul_action G α] [measurable_space α] [mul_action H β]
57
+ [measurable_space β] [normed_add_comm_group E] {s t : set α} {μ : measure α}
57
58
58
59
/-- If for each `x : α`, exactly one of `g • x`, `g : G`, belongs to a measurable set `s`, then `s`
59
60
is a fundamental domain for the action of `G` on `α`. -/
@@ -63,13 +64,23 @@ lemma mk' (h_meas : null_measurable_set s μ) (h_exists : ∀ x : α, ∃! g : G
63
64
is_fundamental_domain G s μ :=
64
65
{ null_measurable_set := h_meas,
65
66
ae_covers := eventually_of_forall $ λ x, (h_exists x).exists,
66
- ae_disjoint := λ g hne , disjoint.ae_disjoint $ disjoint_left.2
67
+ ae_disjoint := λ a b hab , disjoint.ae_disjoint $ disjoint_left.2 $ λ x hxa hxb,
67
68
begin
68
- rintro _ ⟨x, hx, rfl⟩ hgx,
69
- rw ← one_smul G x at hx,
70
- exact hne ((h_exists x).unique hgx hx)
69
+ rw mem_smul_set_iff_inv_smul_mem at hxa hxb,
70
+ exact hab (inv_injective $ (h_exists x).unique hxa hxb),
71
71
end }
72
72
73
+ /-- For `s` to be a fundamental domain, it's enough to check `ae_disjoint (g • s) s` for `g ≠ 1`. -/
74
+ @[to_additive " For `s` to be a fundamental domain, it's enough to check `ae_disjoint (g +ᵥ s) s` for
75
+ `g ≠ 0`." ]
76
+ lemma mk'' (h_meas : null_measurable_set s μ) (h_ae_covers : ∀ᵐ x ∂μ, ∃ g : G, g • x ∈ s)
77
+ (h_ae_disjoint : ∀ g ≠ (1 : G), ae_disjoint μ (g • s) s)
78
+ (h_qmp : ∀ (g : G), quasi_measure_preserving ((•) g : α → α) μ μ) :
79
+ is_fundamental_domain G s μ :=
80
+ { null_measurable_set := h_meas,
81
+ ae_covers := h_ae_covers,
82
+ ae_disjoint := pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one h_ae_disjoint h_qmp }
83
+
73
84
/-- If a measurable space has a finite measure `μ` and a countable group `G` acts
74
85
quasi-measure-preservingly, then to show that a set `s` is a fundamental domain, it is sufficient
75
86
to check that its translates `g • s` are (almost) disjoint and that the sum `∑' g, μ (g • s)` is
@@ -85,12 +96,12 @@ lemma mk_of_measure_univ_le [is_finite_measure μ] [countable G]
85
96
(h_qmp : ∀ (g : G), quasi_measure_preserving ((•) g : α → α) μ μ)
86
97
(h_measure_univ_le : μ (univ : set α) ≤ ∑' (g : G), μ (g • s)) :
87
98
is_fundamental_domain G s μ :=
99
+ have ae_disjoint : pairwise (ae_disjoint μ on (λ (g : G), g • s)) :=
100
+ pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one h_ae_disjoint h_qmp,
88
101
{ null_measurable_set := h_meas,
89
- ae_disjoint := h_ae_disjoint ,
102
+ ae_disjoint := ae_disjoint ,
90
103
ae_covers :=
91
104
begin
92
- replace ae_disjoint : pairwise (ae_disjoint μ on (λ (g : G), g • s)) :=
93
- pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one h_ae_disjoint h_qmp,
94
105
replace h_meas : ∀ (g : G), null_measurable_set (g • s) μ :=
95
106
λ g, by { rw [← inv_inv g, ← preimage_smul], exact h_meas.preimage (h_qmp g⁻¹), },
96
107
have h_meas' : null_measurable_set {a | ∃ (g : G), g • a ∈ s} μ,
@@ -107,42 +118,20 @@ eventually_eq_univ.2 $ h.ae_covers.mono $ λ x ⟨g, hg⟩, mem_Union.2 ⟨g⁻
107
118
108
119
@[to_additive] lemma mono (h : is_fundamental_domain G s μ) {ν : measure α} (hle : ν ≪ μ) :
109
120
is_fundamental_domain G s ν :=
110
- ⟨h.1 .mono_ac hle, hle h.2 , λ g hg, hle (h.3 g hg)⟩
111
-
112
- variables [measurable_space G] [has_measurable_smul G α] [smul_invariant_measure G α μ]
113
-
114
- @[to_additive] lemma null_measurable_set_smul (h : is_fundamental_domain G s μ) (g : G) :
115
- null_measurable_set (g • s) μ :=
116
- h.null_measurable_set.smul g
117
-
118
- @[to_additive] lemma restrict_restrict (h : is_fundamental_domain G s μ) (g : G) (t : set α) :
119
- (μ.restrict t).restrict (g • s) = μ.restrict (g • s ∩ t) :=
120
- restrict_restrict₀ ((h.null_measurable_set_smul g).mono restrict_le_self)
121
-
122
- @[to_additive] lemma pairwise_ae_disjoint (h : is_fundamental_domain G s μ) :
123
- pairwise (λ g₁ g₂ : G, ae_disjoint μ (g₁ • s) (g₂ • s)) :=
124
- pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one h.ae_disjoint
125
- (λ g, measure_preserving.quasi_measure_preserving $ by simp)
126
-
127
- @[to_additive] lemma pairwise_ae_disjoint_of_ac {ν} (h : is_fundamental_domain G s μ) (hν : ν ≪ μ) :
128
- pairwise (λ g₁ g₂ : G, ae_disjoint ν (g₁ • s) (g₂ • s)) :=
129
- h.pairwise_ae_disjoint.mono $ λ g₁ g₂ H, hν H
121
+ ⟨h.1 .mono_ac hle, hle h.2 , h.ae_disjoint.mono $ λ a b hab, hle hab⟩
130
122
131
123
@[to_additive] lemma preimage_of_equiv {ν : measure β} (h : is_fundamental_domain G s μ) {f : β → α}
132
124
(hf : quasi_measure_preserving f ν μ) {e : G → H} (he : bijective e)
133
125
(hef : ∀ g, semiconj f ((•) (e g)) ((•) g)) :
134
126
is_fundamental_domain H (f ⁻¹' s) ν :=
135
127
{ null_measurable_set := h.null_measurable_set.preimage hf,
136
128
ae_covers := (hf.ae h.ae_covers).mono $ λ x ⟨g, hg⟩, ⟨e g, by rwa [mem_preimage, hef g x]⟩,
137
- ae_disjoint := λ g hg ,
129
+ ae_disjoint := λ a b hab ,
138
130
begin
139
131
lift e to G ≃ H using he,
140
- have : (e.symm g⁻¹)⁻¹ ≠ (e.symm 1 )⁻¹, by simp [hg],
141
- convert (h.pairwise_ae_disjoint this ).preimage hf using 1 ,
142
- { simp only [← preimage_smul_inv, preimage_preimage, ← hef _ _, e.apply_symm_apply,
143
- inv_inv] },
144
- { ext1 x,
145
- simp only [mem_preimage, ← preimage_smul, ← hef _ _, e.apply_symm_apply, one_smul] }
132
+ have : (e.symm a⁻¹)⁻¹ ≠ (e.symm b⁻¹)⁻¹, by simp [hab],
133
+ convert (h.ae_disjoint this ).preimage hf using 1 ,
134
+ simp only [←preimage_smul_inv, preimage_preimage, ←hef _ _, e.apply_symm_apply, inv_inv],
146
135
end }
147
136
148
137
@[to_additive] lemma image_of_equiv {ν : measure β} (h : is_fundamental_domain G s μ)
@@ -156,11 +145,9 @@ begin
156
145
rw [← hef _ _, f.symm_apply_apply, f.symm_apply_apply, e.apply_symm_apply]
157
146
end
158
147
159
- @[to_additive] lemma smul (h : is_fundamental_domain G s μ) (g : G) :
160
- is_fundamental_domain G (g • s) μ :=
161
- h.image_of_equiv (mul_action.to_perm g) (measure_preserving_smul _ _).quasi_measure_preserving
162
- ⟨λ g', g⁻¹ * g' * g, λ g', g * g' * g⁻¹, λ g', by simp [mul_assoc], λ g', by simp [mul_assoc]⟩ $
163
- λ g' x, by simp [smul_smul, mul_assoc]
148
+ @[to_additive] lemma pairwise_ae_disjoint_of_ac {ν} (h : is_fundamental_domain G s μ) (hν : ν ≪ μ) :
149
+ pairwise (λ g₁ g₂ : G, ae_disjoint ν (g₁ • s) (g₂ • s)) :=
150
+ h.ae_disjoint.mono $ λ g₁ g₂ H, hν H
164
151
165
152
@[to_additive] lemma smul_of_comm {G' : Type *} [group G'] [mul_action G' α] [measurable_space G']
166
153
[has_measurable_smul G' α] [smul_invariant_measure G' α μ] [smul_comm_class G' G α]
@@ -169,11 +156,27 @@ h.image_of_equiv (mul_action.to_perm g) (measure_preserving_smul _ _).quasi_meas
169
156
h.image_of_equiv (mul_action.to_perm g) (measure_preserving_smul _ _).quasi_measure_preserving
170
157
(equiv.refl _) $ smul_comm g
171
158
159
+ variables [measurable_space G] [has_measurable_smul G α] [smul_invariant_measure G α μ]
160
+
161
+ @[to_additive] lemma null_measurable_set_smul (h : is_fundamental_domain G s μ) (g : G) :
162
+ null_measurable_set (g • s) μ :=
163
+ h.null_measurable_set.smul g
164
+
165
+ @[to_additive] lemma restrict_restrict (h : is_fundamental_domain G s μ) (g : G) (t : set α) :
166
+ (μ.restrict t).restrict (g • s) = μ.restrict (g • s ∩ t) :=
167
+ restrict_restrict₀ ((h.null_measurable_set_smul g).mono restrict_le_self)
168
+
169
+ @[to_additive] lemma smul (h : is_fundamental_domain G s μ) (g : G) :
170
+ is_fundamental_domain G (g • s) μ :=
171
+ h.image_of_equiv (mul_action.to_perm g) (measure_preserving_smul _ _).quasi_measure_preserving
172
+ ⟨λ g', g⁻¹ * g' * g, λ g', g * g' * g⁻¹, λ g', by simp [mul_assoc], λ g', by simp [mul_assoc]⟩ $
173
+ λ g' x, by simp [smul_smul, mul_assoc]
174
+
172
175
variables [countable G] {ν : measure α}
173
176
174
177
@[to_additive] lemma sum_restrict_of_ac (h : is_fundamental_domain G s μ) (hν : ν ≪ μ) :
175
178
sum (λ g : G, ν.restrict (g • s)) = ν :=
176
- by rw [← restrict_Union_ae (h.pairwise_ae_disjoint .mono $ λ i j h, hν h)
179
+ by rw [← restrict_Union_ae (h.ae_disjoint .mono $ λ i j h, hν h)
177
180
(λ g, (h.null_measurable_set_smul g).mono_ac hν),
178
181
restrict_congr_set (hν h.Union_smul_ae_eq), restrict_univ]
179
182
@@ -338,7 +341,7 @@ begin
338
341
by simp only [hf, hs.restrict_restrict]
339
342
... = ∫ x in ⋃ g : G, g • s, f x ∂(μ.restrict t) :
340
343
(integral_Union_ae (λ g, (hs.null_measurable_set_smul g).mono_ac hac)
341
- (hs.pairwise_ae_disjoint .mono $ λ i j h, hac h) hft.integrable.integrable_on).symm
344
+ (hs.ae_disjoint .mono $ λ i j h, hac h) hft.integrable.integrable_on).symm
342
345
... = ∫ x in t, f x ∂μ :
343
346
by rw [restrict_congr_set (hac hs.Union_smul_ae_eq), restrict_univ] },
344
347
{ rw [integral_undef hfs, integral_undef],
0 commit comments