Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit d6e1c55

Browse files
committed
chore(data/polynomial/monic): dedup degree_map (#11792)
1 parent 2f4f8ad commit d6e1c55

File tree

4 files changed

+9
-13
lines changed

4 files changed

+9
-13
lines changed

src/data/polynomial/monic.lean

Lines changed: 5 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -318,34 +318,30 @@ else degree_map_eq_of_leading_coeff_ne_zero _
318318
(by rw [← f.map_zero]; exact mt hf.eq_iff.1
319319
(mt leading_coeff_eq_zero.1 h))
320320

321-
lemma degree_map' (p : polynomial R) :
322-
degree (p.map f) = degree p :=
323-
p.degree_map_eq_of_injective hf
324-
325-
lemma nat_degree_map' (p : polynomial R) :
321+
lemma nat_degree_map_eq_of_injective (p : polynomial R) :
326322
nat_degree (p.map f) = nat_degree p :=
327-
nat_degree_eq_of_degree_eq (degree_map' hf p)
323+
nat_degree_eq_of_degree_eq (degree_map_eq_of_injective hf p)
328324

329325
lemma leading_coeff_map' (p : polynomial R) :
330326
leading_coeff (p.map f) = f (leading_coeff p) :=
331327
begin
332328
unfold leading_coeff,
333-
rw [coeff_map, nat_degree_map' hf p],
329+
rw [coeff_map, nat_degree_map_eq_of_injective hf p],
334330
end
335331

336332
lemma next_coeff_map (p : polynomial R) :
337333
(p.map f).next_coeff = f p.next_coeff :=
338334
begin
339335
unfold next_coeff,
340-
rw nat_degree_map' hf,
336+
rw nat_degree_map_eq_of_injective hf,
341337
split_ifs; simp
342338
end
343339

344340
lemma leading_coeff_of_injective (p : polynomial R) :
345341
leading_coeff (p.map f) = f (leading_coeff p) :=
346342
begin
347343
delta leading_coeff,
348-
rw [coeff_map f, nat_degree_map' hf p]
344+
rw [coeff_map f, nat_degree_map_eq_of_injective hf p]
349345
end
350346

351347
lemma monic_of_injective {p : polynomial R} (hp : (p.map f).monic) : p.monic :=

src/field_theory/splitting_field.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -419,7 +419,7 @@ begin
419419
congr' 1,
420420
rw ← this,
421421
simp, },
422-
{ rw [nat_degree_map' (is_fraction_ring.injective K (fraction_ring K)), ← this],
422+
{ rw [nat_degree_map_eq_of_injective (is_fraction_ring.injective K (fraction_ring K)), ← this],
423423
simp only [←hroots, multiset.card_map], },
424424
end
425425

@@ -466,7 +466,7 @@ begin
466466
(is_fraction_ring.injective K (fraction_ring K)) hroots,
467467
have : multiset.card (map (algebra_map K (fraction_ring K)) p).roots =
468468
(map (algebra_map K (fraction_ring K)) p).nat_degree,
469-
{ rw [nat_degree_map' (is_fraction_ring.injective K (fraction_ring K)), ← h],
469+
{ rw [nat_degree_map_eq_of_injective (is_fraction_ring.injective K (fraction_ring K)), ← h],
470470
simp only [←hroots, multiset.card_map], },
471471
rw [← C_leading_coeff_mul_prod_multiset_X_sub_C_of_field this],
472472
simp only [map_C, function.comp_app, map_X, map_sub],

src/ring_theory/algebraic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -140,7 +140,7 @@ lemma _root_.is_algebraic_of_larger_base_of_injective (hinj : function.injective
140140
{x : A} (A_alg : _root_.is_algebraic R x) : _root_.is_algebraic S x :=
141141
let ⟨p, hp₁, hp₂⟩ := A_alg in
142142
⟨p.map (algebra_map _ _),
143-
by rwa [ne.def, ← degree_eq_bot, degree_map' hinj, degree_eq_bot],
143+
by rwa [ne.def, ← degree_eq_bot, degree_map_eq_of_injective hinj, degree_eq_bot],
144144
by simpa⟩
145145

146146
/-- If A is an algebraic algebra over R, then A is algebraic over S when S is an extension of R,

src/ring_theory/polynomial/gauss_lemma.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ begin
4242
refine ⟨(map_ring_hom φ).is_unit_map, λ h, _⟩,
4343
rcases is_unit_iff.1 h with ⟨_, ⟨u, rfl⟩, hu⟩,
4444
have hdeg := degree_C u.ne_zero,
45-
rw [hu, degree_map' hinj] at hdeg,
45+
rw [hu, degree_map_eq_of_injective hinj] at hdeg,
4646
rw [eq_C_of_degree_eq_zero hdeg, is_primitive_iff_content_eq_one,
4747
content_C, normalize_eq_one] at hf,
4848
rwa [eq_C_of_degree_eq_zero hdeg, is_unit_C],

0 commit comments

Comments
 (0)