|
43 | 43 |
|
44 | 44 | /-- Let `{x | p x}` be an additive subsemigroup of an additive commutative monoid `M`. Let `f : M →
|
45 | 45 | N` be a map subadditive on `{x | p x}`, i.e., `p x → p y → f (x + y) ≤ f x + f y`. Let `g i`, `i ∈
|
46 |
| -s`, be a nonempty finite family of elements of `M` such that `∀ i ∈ s, p (g i)`. Then |
| 46 | +s`, be a nonempty finite family of elements of `M` such that `∀ i ∈ s, p (g i)`. Then |
47 | 47 | `f (∑ i in s, g i) ≤ ∏ i in s, f (g i)`. -/
|
48 | 48 | add_decl_doc le_sum_nonempty_of_subadditive_on_pred
|
49 | 49 |
|
@@ -136,6 +136,11 @@ calc (∏ i in s, f i) ≤ (∏ i in t \ s, f i) * (∏ i in s, f i) :
|
136 | 136 | lemma prod_mono_set_of_one_le' (hf : ∀ x, 1 ≤ f x) : monotone (λ s, ∏ x in s, f x) :=
|
137 | 137 | λ s t hst, prod_le_prod_of_subset_of_one_le' hst $ λ x _ _, hf x
|
138 | 138 |
|
| 139 | +@[to_additive sum_le_univ_sum_of_nonneg] |
| 140 | +lemma prod_le_univ_prod_of_one_le' [fintype ι] {s : finset ι} (w : ∀ x, 1 ≤ f x) : |
| 141 | + ∏ x in s, f x ≤ ∏ x, f x := |
| 142 | +prod_le_prod_of_subset_of_one_le' (subset_univ s) (λ a _ _, w a) |
| 143 | + |
139 | 144 | @[to_additive sum_eq_zero_iff_of_nonneg]
|
140 | 145 | lemma prod_eq_one_iff_of_one_le' : (∀ i ∈ s, 1 ≤ f i) → (∏ i in s, f i = 1 ↔ ∀ i ∈ s, f i = 1) :=
|
141 | 146 | begin
|
|
0 commit comments