Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit db0b566

Browse files
committed
feat(data/set/basic): add sum.range_eq (#17159)
1 parent 45f23a6 commit db0b566

File tree

1 file changed

+5
-3
lines changed

1 file changed

+5
-3
lines changed

src/data/set/basic.lean

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2290,9 +2290,11 @@ lemma surjective_onto_range : surjective (range_factorization f) :=
22902290
lemma image_eq_range (f : α → β) (s : set α) : f '' s = range (λ(x : s), f x) :=
22912291
by { ext, split, rintro ⟨x, h1, h2⟩, exact ⟨⟨x, h1⟩, h2⟩, rintro ⟨⟨x, h1⟩, h2⟩, exact ⟨x, h1, h2⟩ }
22922292

2293-
@[simp] lemma sum.elim_range {α β γ : Type*} (f : α → γ) (g : β → γ) :
2294-
range (sum.elim f g) = range f ∪ range g :=
2295-
by simp [set.ext_iff, mem_range]
2293+
lemma _root_.sum.range_eq (f : α ⊕ β → γ) : range f = range (f ∘ sum.inl) ∪ range (f ∘ sum.inr) :=
2294+
ext $ λ x, sum.exists
2295+
2296+
@[simp] lemma sum.elim_range (f : α → γ) (g : β → γ) : range (sum.elim f g) = range f ∪ range g :=
2297+
sum.range_eq _
22962298

22972299
lemma range_ite_subset' {p : Prop} [decidable p] {f g : α → β} :
22982300
range (if p then f else g) ⊆ range f ∪ range g :=

0 commit comments

Comments
 (0)