Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit db46133

Browse files
committed
chore(data/setoid/partition): use set.finite (#17228)
1 parent 1417a74 commit db46133

File tree

2 files changed

+4
-3
lines changed

2 files changed

+4
-3
lines changed

src/combinatorics/simple_graph/coloring.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ lemma coloring.mem_color_classes {v : V} : C.color_class (C v) ∈ C.color_class
100100
⟨v, rfl⟩
101101

102102
lemma coloring.color_classes_finite [finite α] : C.color_classes.finite :=
103-
set.finite_coe_iff.1 $ setoid.finite_classes_ker _
103+
setoid.finite_classes_ker _
104104

105105
lemma coloring.card_color_classes_le [fintype α] [fintype C.color_classes] :
106106
fintype.card C.color_classes ≤ fintype.card α :=

src/data/setoid/partition.lean

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -67,8 +67,9 @@ lemma classes_ker_subset_fiber_set {β : Type*} (f : α → β) :
6767
(setoid.ker f).classes ⊆ set.range (λ y, {x | f x = y}) :=
6868
by { rintro s ⟨x, rfl⟩, rw set.mem_range, exact ⟨f x, rfl⟩ }
6969

70-
lemma finite_classes_ker {α β : Type*} [finite β] (f : α → β) : finite (setoid.ker f).classes :=
71-
by { classical, exact finite.set.subset _ (classes_ker_subset_fiber_set f) }
70+
lemma finite_classes_ker {α β : Type*} [finite β] (f : α → β) :
71+
(setoid.ker f).classes.finite :=
72+
(set.finite_range _).subset $ classes_ker_subset_fiber_set f
7273

7374
lemma card_classes_ker_le {α β : Type*} [fintype β]
7475
(f : α → β) [fintype (setoid.ker f).classes] :

0 commit comments

Comments
 (0)