Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit dba3dce

Browse files
kex-yRemyDegennesgouezel
committed
feat(measure_theory/function/conditional_expectation): monotonicity of the conditional expectation (#15024)
Co-authored-by: RemyDegenne <Remydegenne@gmail.com> Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr>
1 parent 676e772 commit dba3dce

File tree

1 file changed

+78
-4
lines changed

1 file changed

+78
-4
lines changed

src/measure_theory/function/conditional_expectation.lean

Lines changed: 78 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1322,6 +1322,15 @@ begin
13221322
simp only [coe_fn_coe_base, submodule.coe_zero, continuous_linear_map.map_zero],
13231323
end
13241324

1325+
lemma set_integral_condexp_L2_indicator (hs : measurable_set[m] s) (ht : measurable_set t)
1326+
(hμs : μ s ≠ ∞) (hμt : μ t ≠ ∞) :
1327+
∫ x in s, (condexp_L2 ℝ hm (indicator_const_Lp 2 ht hμt (1 : ℝ))) x ∂μ = (μ (t ∩ s)).to_real :=
1328+
calc ∫ x in s, (condexp_L2 ℝ hm (indicator_const_Lp 2 ht hμt (1 : ℝ))) x ∂μ
1329+
= ∫ x in s, indicator_const_Lp 2 ht hμt (1 : ℝ) x ∂μ :
1330+
@integral_condexp_L2_eq α _ ℝ _ _ _ _ _ _ _ _ hm (indicator_const_Lp 2 ht hμt (1 : ℝ)) hs hμs
1331+
... = (μ (t ∩ s)).to_real • 1 : set_integral_indicator_const_Lp (hm s hs) ht hμt (1 : ℝ)
1332+
... = (μ (t ∩ s)).to_real : by rw [smul_eq_mul, mul_one]
1333+
13251334
lemma set_integral_condexp_ind_smul (hs : measurable_set[m] s) (ht : measurable_set t)
13261335
(hμs : μ s ≠ ∞) (hμt : μ t ≠ ∞) (x : G') :
13271336
∫ a in s, (condexp_ind_smul hm ht hμt x) a ∂μ = (μ (t ∩ s)).to_real • x :=
@@ -1330,11 +1339,43 @@ calc ∫ a in s, (condexp_ind_smul hm ht hμt x) a ∂μ
13301339
set_integral_congr_ae (hm s hs) ((condexp_ind_smul_ae_eq_smul hm ht hμt x).mono (λ x hx hxs, hx))
13311340
... = (∫ a in s, condexp_L2 ℝ hm (indicator_const_Lp 2 ht hμt (1 : ℝ)) a ∂μ) • x :
13321341
integral_smul_const _ x
1333-
... = (∫ a in s, indicator_const_Lp 2 ht hμt (1 : ℝ) a ∂μ) • x :
1334-
by rw @integral_condexp_L2_eq α _ ℝ _ _ _ _ _ _ _ _ hm
1335-
(indicator_const_Lp 2 ht hμt (1 : ℝ)) hs hμs
13361342
... = (μ (t ∩ s)).to_real • x :
1337-
by rw [set_integral_indicator_const_Lp (hm s hs), smul_assoc, one_smul]
1343+
by rw set_integral_condexp_L2_indicator hs ht hμs hμt
1344+
1345+
lemma condexp_L2_indicator_nonneg (hm : m ≤ m0) (hs : measurable_set s) (hμs : μ s ≠ ∞)
1346+
[sigma_finite (μ.trim hm)] :
1347+
0 ≤ᵐ[μ] condexp_L2 ℝ hm (indicator_const_Lp 2 hs hμs (1 : ℝ)) :=
1348+
begin
1349+
have h : ae_strongly_measurable' m (condexp_L2 ℝ hm (indicator_const_Lp 2 hs hμs (1 : ℝ))) μ,
1350+
from ae_strongly_measurable'_condexp_L2 _ _,
1351+
refine eventually_le.trans_eq _ h.ae_eq_mk.symm,
1352+
refine @ae_le_of_ae_le_trim _ _ _ _ _ _ hm _ _ _,
1353+
refine ae_nonneg_of_forall_set_integral_nonneg_of_sigma_finite _ _,
1354+
{ intros t ht hμt,
1355+
refine @integrable.integrable_on _ _ m _ _ _ _ _,
1356+
refine integrable.trim hm _ _,
1357+
{ rw integrable_congr h.ae_eq_mk.symm,
1358+
exact integrable_condexp_L2_indicator hm hs hμs _, },
1359+
{ exact h.strongly_measurable_mk, }, },
1360+
{ intros t ht hμt,
1361+
rw ← set_integral_trim hm h.strongly_measurable_mk ht,
1362+
have h_ae : ∀ᵐ x ∂μ, x ∈ t → h.mk _ x = condexp_L2 ℝ hm (indicator_const_Lp 2 hs hμs (1 : ℝ)) x,
1363+
{ filter_upwards [h.ae_eq_mk] with x hx,
1364+
exact λ _, hx.symm, },
1365+
rw [set_integral_congr_ae (hm t ht) h_ae,
1366+
set_integral_condexp_L2_indicator ht hs ((le_trim hm).trans_lt hμt).ne hμs],
1367+
exact ennreal.to_real_nonneg, },
1368+
end
1369+
1370+
lemma condexp_ind_smul_nonneg {E} [normed_lattice_add_comm_group E] [normed_space ℝ E]
1371+
[ordered_smul ℝ E] [sigma_finite (μ.trim hm)]
1372+
(hs : measurable_set s) (hμs : μ s ≠ ∞) (x : E) (hx : 0 ≤ x) :
1373+
0 ≤ᵐ[μ] condexp_ind_smul hm hs hμs x :=
1374+
begin
1375+
refine eventually_le.trans_eq _ (condexp_ind_smul_ae_eq_smul hm hs hμs x).symm,
1376+
filter_upwards [condexp_L2_indicator_nonneg hm hs hμs] with a ha,
1377+
exact smul_nonneg ha hx,
1378+
end
13381379

13391380
end condexp_ind_smul
13401381

@@ -1628,6 +1669,15 @@ begin
16281669
by_cases hx_mem : x ∈ s; simp [hx_mem],
16291670
end
16301671

1672+
lemma condexp_ind_nonneg {E} [normed_lattice_add_comm_group E] [normed_space ℝ E] [ordered_smul ℝ E]
1673+
(hs : measurable_set s) (hμs : μ s ≠ ∞) (x : E) (hx : 0 ≤ x) :
1674+
0 ≤ condexp_ind hm μ s x :=
1675+
begin
1676+
rw ← coe_fn_le,
1677+
refine eventually_le.trans_eq _ (condexp_ind_ae_eq_condexp_ind_smul hm hs hμs x).symm,
1678+
exact (coe_fn_zero E 1 μ).trans_le (condexp_ind_smul_nonneg hs hμs x hx),
1679+
end
1680+
16311681
end condexp_ind
16321682

16331683
section condexp_L1
@@ -1836,6 +1886,17 @@ begin
18361886
exact ae_strongly_measurable'.congr hfm (integrable.coe_fn_to_L1 hfi).symm,
18371887
end
18381888

1889+
lemma condexp_L1_mono {E} [normed_lattice_add_comm_group E] [complete_space E] [normed_space ℝ E]
1890+
[ordered_smul ℝ E] {f g : α → E}
1891+
(hf : integrable f μ) (hg : integrable g μ) (hfg : f ≤ᵐ[μ] g) :
1892+
condexp_L1 hm μ f ≤ᵐ[μ] condexp_L1 hm μ g :=
1893+
begin
1894+
rw coe_fn_le,
1895+
have h_nonneg : ∀ s, measurable_set s → μ s < ∞ → ∀ x : E, 0 ≤ x → 0 ≤ condexp_ind hm μ s x,
1896+
from λ s hs hμs x hx, condexp_ind_nonneg hs hμs.ne x hx,
1897+
exact set_to_fun_mono (dominated_fin_meas_additive_condexp_ind E hm μ) h_nonneg hf hg hfg,
1898+
end
1899+
18391900
end condexp_L1
18401901

18411902
section condexp
@@ -2071,6 +2132,19 @@ begin
20712132
{ simp_rw integral_congr_ae (ae_restrict_of_ae (condexp_undef hf)), },
20722133
end
20732134

2135+
lemma condexp_mono {E} [normed_lattice_add_comm_group E] [complete_space E] [normed_space ℝ E]
2136+
[ordered_smul ℝ E] {f g : α → E} (hf : integrable f μ) (hg : integrable g μ) (hfg : f ≤ᵐ[μ] g) :
2137+
μ[f | m] ≤ᵐ[μ] μ[g | m] :=
2138+
begin
2139+
by_cases hm : m ≤ m0,
2140+
swap, { simp_rw condexp_of_not_le hm, },
2141+
by_cases hμm : sigma_finite (μ.trim hm),
2142+
swap, { simp_rw condexp_of_not_sigma_finite hm hμm, },
2143+
haveI : sigma_finite (μ.trim hm) := hμm,
2144+
exact (condexp_ae_eq_condexp_L1 hm _).trans_le
2145+
((condexp_L1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexp_L1 hm _).symm),
2146+
end
2147+
20742148
section real
20752149

20762150
lemma rn_deriv_ae_eq_condexp {hm : m ≤ m0} [hμm : sigma_finite (μ.trim hm)] {f : α → ℝ}

0 commit comments

Comments
 (0)