@@ -1322,6 +1322,15 @@ begin
1322
1322
simp only [coe_fn_coe_base, submodule.coe_zero, continuous_linear_map.map_zero],
1323
1323
end
1324
1324
1325
+ lemma set_integral_condexp_L2_indicator (hs : measurable_set[m] s) (ht : measurable_set t)
1326
+ (hμs : μ s ≠ ∞) (hμt : μ t ≠ ∞) :
1327
+ ∫ x in s, (condexp_L2 ℝ hm (indicator_const_Lp 2 ht hμt (1 : ℝ))) x ∂μ = (μ (t ∩ s)).to_real :=
1328
+ calc ∫ x in s, (condexp_L2 ℝ hm (indicator_const_Lp 2 ht hμt (1 : ℝ))) x ∂μ
1329
+ = ∫ x in s, indicator_const_Lp 2 ht hμt (1 : ℝ) x ∂μ :
1330
+ @integral_condexp_L2_eq α _ ℝ _ _ _ _ _ _ _ _ hm (indicator_const_Lp 2 ht hμt (1 : ℝ)) hs hμs
1331
+ ... = (μ (t ∩ s)).to_real • 1 : set_integral_indicator_const_Lp (hm s hs) ht hμt (1 : ℝ)
1332
+ ... = (μ (t ∩ s)).to_real : by rw [smul_eq_mul, mul_one]
1333
+
1325
1334
lemma set_integral_condexp_ind_smul (hs : measurable_set[m] s) (ht : measurable_set t)
1326
1335
(hμs : μ s ≠ ∞) (hμt : μ t ≠ ∞) (x : G') :
1327
1336
∫ a in s, (condexp_ind_smul hm ht hμt x) a ∂μ = (μ (t ∩ s)).to_real • x :=
@@ -1330,11 +1339,43 @@ calc ∫ a in s, (condexp_ind_smul hm ht hμt x) a ∂μ
1330
1339
set_integral_congr_ae (hm s hs) ((condexp_ind_smul_ae_eq_smul hm ht hμt x).mono (λ x hx hxs, hx))
1331
1340
... = (∫ a in s, condexp_L2 ℝ hm (indicator_const_Lp 2 ht hμt (1 : ℝ)) a ∂μ) • x :
1332
1341
integral_smul_const _ x
1333
- ... = (∫ a in s, indicator_const_Lp 2 ht hμt (1 : ℝ) a ∂μ) • x :
1334
- by rw @integral_condexp_L2_eq α _ ℝ _ _ _ _ _ _ _ _ hm
1335
- (indicator_const_Lp 2 ht hμt (1 : ℝ)) hs hμs
1336
1342
... = (μ (t ∩ s)).to_real • x :
1337
- by rw [set_integral_indicator_const_Lp (hm s hs), smul_assoc, one_smul]
1343
+ by rw set_integral_condexp_L2_indicator hs ht hμs hμt
1344
+
1345
+ lemma condexp_L2_indicator_nonneg (hm : m ≤ m0) (hs : measurable_set s) (hμs : μ s ≠ ∞)
1346
+ [sigma_finite (μ.trim hm)] :
1347
+ 0 ≤ᵐ[μ] condexp_L2 ℝ hm (indicator_const_Lp 2 hs hμs (1 : ℝ)) :=
1348
+ begin
1349
+ have h : ae_strongly_measurable' m (condexp_L2 ℝ hm (indicator_const_Lp 2 hs hμs (1 : ℝ))) μ,
1350
+ from ae_strongly_measurable'_condexp_L2 _ _,
1351
+ refine eventually_le.trans_eq _ h.ae_eq_mk.symm,
1352
+ refine @ae_le_of_ae_le_trim _ _ _ _ _ _ hm _ _ _,
1353
+ refine ae_nonneg_of_forall_set_integral_nonneg_of_sigma_finite _ _,
1354
+ { intros t ht hμt,
1355
+ refine @integrable.integrable_on _ _ m _ _ _ _ _,
1356
+ refine integrable.trim hm _ _,
1357
+ { rw integrable_congr h.ae_eq_mk.symm,
1358
+ exact integrable_condexp_L2_indicator hm hs hμs _, },
1359
+ { exact h.strongly_measurable_mk, }, },
1360
+ { intros t ht hμt,
1361
+ rw ← set_integral_trim hm h.strongly_measurable_mk ht,
1362
+ have h_ae : ∀ᵐ x ∂μ, x ∈ t → h.mk _ x = condexp_L2 ℝ hm (indicator_const_Lp 2 hs hμs (1 : ℝ)) x,
1363
+ { filter_upwards [h.ae_eq_mk] with x hx,
1364
+ exact λ _, hx.symm, },
1365
+ rw [set_integral_congr_ae (hm t ht) h_ae,
1366
+ set_integral_condexp_L2_indicator ht hs ((le_trim hm).trans_lt hμt).ne hμs],
1367
+ exact ennreal.to_real_nonneg, },
1368
+ end
1369
+
1370
+ lemma condexp_ind_smul_nonneg {E} [normed_lattice_add_comm_group E] [normed_space ℝ E]
1371
+ [ordered_smul ℝ E] [sigma_finite (μ.trim hm)]
1372
+ (hs : measurable_set s) (hμs : μ s ≠ ∞) (x : E) (hx : 0 ≤ x) :
1373
+ 0 ≤ᵐ[μ] condexp_ind_smul hm hs hμs x :=
1374
+ begin
1375
+ refine eventually_le.trans_eq _ (condexp_ind_smul_ae_eq_smul hm hs hμs x).symm,
1376
+ filter_upwards [condexp_L2_indicator_nonneg hm hs hμs] with a ha,
1377
+ exact smul_nonneg ha hx,
1378
+ end
1338
1379
1339
1380
end condexp_ind_smul
1340
1381
@@ -1628,6 +1669,15 @@ begin
1628
1669
by_cases hx_mem : x ∈ s; simp [hx_mem],
1629
1670
end
1630
1671
1672
+ lemma condexp_ind_nonneg {E} [normed_lattice_add_comm_group E] [normed_space ℝ E] [ordered_smul ℝ E]
1673
+ (hs : measurable_set s) (hμs : μ s ≠ ∞) (x : E) (hx : 0 ≤ x) :
1674
+ 0 ≤ condexp_ind hm μ s x :=
1675
+ begin
1676
+ rw ← coe_fn_le,
1677
+ refine eventually_le.trans_eq _ (condexp_ind_ae_eq_condexp_ind_smul hm hs hμs x).symm,
1678
+ exact (coe_fn_zero E 1 μ).trans_le (condexp_ind_smul_nonneg hs hμs x hx),
1679
+ end
1680
+
1631
1681
end condexp_ind
1632
1682
1633
1683
section condexp_L1
@@ -1836,6 +1886,17 @@ begin
1836
1886
exact ae_strongly_measurable'.congr hfm (integrable.coe_fn_to_L1 hfi).symm,
1837
1887
end
1838
1888
1889
+ lemma condexp_L1_mono {E} [normed_lattice_add_comm_group E] [complete_space E] [normed_space ℝ E]
1890
+ [ordered_smul ℝ E] {f g : α → E}
1891
+ (hf : integrable f μ) (hg : integrable g μ) (hfg : f ≤ᵐ[μ] g) :
1892
+ condexp_L1 hm μ f ≤ᵐ[μ] condexp_L1 hm μ g :=
1893
+ begin
1894
+ rw coe_fn_le,
1895
+ have h_nonneg : ∀ s, measurable_set s → μ s < ∞ → ∀ x : E, 0 ≤ x → 0 ≤ condexp_ind hm μ s x,
1896
+ from λ s hs hμs x hx, condexp_ind_nonneg hs hμs.ne x hx,
1897
+ exact set_to_fun_mono (dominated_fin_meas_additive_condexp_ind E hm μ) h_nonneg hf hg hfg,
1898
+ end
1899
+
1839
1900
end condexp_L1
1840
1901
1841
1902
section condexp
@@ -2071,6 +2132,19 @@ begin
2071
2132
{ simp_rw integral_congr_ae (ae_restrict_of_ae (condexp_undef hf)), },
2072
2133
end
2073
2134
2135
+ lemma condexp_mono {E} [normed_lattice_add_comm_group E] [complete_space E] [normed_space ℝ E]
2136
+ [ordered_smul ℝ E] {f g : α → E} (hf : integrable f μ) (hg : integrable g μ) (hfg : f ≤ᵐ[μ] g) :
2137
+ μ[f | m] ≤ᵐ[μ] μ[g | m] :=
2138
+ begin
2139
+ by_cases hm : m ≤ m0,
2140
+ swap, { simp_rw condexp_of_not_le hm, },
2141
+ by_cases hμm : sigma_finite (μ.trim hm),
2142
+ swap, { simp_rw condexp_of_not_sigma_finite hm hμm, },
2143
+ haveI : sigma_finite (μ.trim hm) := hμm,
2144
+ exact (condexp_ae_eq_condexp_L1 hm _).trans_le
2145
+ ((condexp_L1_mono hf hg hfg).trans_eq (condexp_ae_eq_condexp_L1 hm _).symm),
2146
+ end
2147
+
2074
2148
section real
2075
2149
2076
2150
lemma rn_deriv_ae_eq_condexp {hm : m ≤ m0} [hμm : sigma_finite (μ.trim hm)] {f : α → ℝ}
0 commit comments