@@ -127,17 +127,25 @@ open pi
127
127
128
128
variables (f)
129
129
130
+ /-- The zero-preserving homomorphism including a single value
131
+ into a dependent family of values, as functions supported at a point.
132
+
133
+ This is the `zero_hom` version of `pi.single`. -/
134
+ @[simps] def zero_hom.single [Π i, has_zero $ f i] (i : I) : zero_hom (f i) (Π i, f i) :=
135
+ { to_fun := single i,
136
+ map_zero' := function.update_eq_self i 0 }
137
+
130
138
/-- The additive monoid homomorphism including a single additive monoid
131
139
into a dependent family of additive monoids, as functions supported at a point.
132
140
133
141
This is the `add_monoid_hom` version of `pi.single`. -/
134
142
@[simps] def add_monoid_hom.single [Π i, add_monoid $ f i] (i : I) : f i →+ Π i, f i :=
135
143
{ to_fun := single i,
136
- map_zero' := function.update_eq_self i 0 ,
137
144
map_add' := λ x y, funext $ λ j, begin
138
145
refine (apply_single₂ _ (λ _, _) i x y j).symm,
139
146
exact zero_add 0 ,
140
- end , }
147
+ end ,
148
+ .. (zero_hom.single f i) }
141
149
142
150
/-- The multiplicative homomorphism including a single `monoid_with_zero`
143
151
into a dependent family of monoid_with_zeros, as functions supported at a point.
@@ -153,9 +161,9 @@ This is the `mul_hom` version of `pi.single`. -/
153
161
variables {f}
154
162
155
163
@[simp]
156
- lemma pi.single_zero [Π i, add_monoid $ f i] (i : I) :
164
+ lemma pi.single_zero [Π i, has_zero $ f i] (i : I) :
157
165
single i (0 : f i) = 0 :=
158
- (add_monoid_hom .single f i).map_zero
166
+ (zero_hom .single f i).map_zero
159
167
160
168
lemma pi.single_add [Π i, add_monoid $ f i] (i : I) (x y : f i) :
161
169
single i (x + y) = single i x + single i y :=
0 commit comments