Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit dccc542

Browse files
committed
fix(algebra/group/pi): remove unnecessary add_monoid requirement from pi.single_zero (#6325)
Follows on from #6317
1 parent f0aad50 commit dccc542

File tree

1 file changed

+12
-4
lines changed

1 file changed

+12
-4
lines changed

src/algebra/group/pi.lean

Lines changed: 12 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -127,17 +127,25 @@ open pi
127127

128128
variables (f)
129129

130+
/-- The zero-preserving homomorphism including a single value
131+
into a dependent family of values, as functions supported at a point.
132+
133+
This is the `zero_hom` version of `pi.single`. -/
134+
@[simps] def zero_hom.single [Π i, has_zero $ f i] (i : I) : zero_hom (f i) (Π i, f i) :=
135+
{ to_fun := single i,
136+
map_zero' := function.update_eq_self i 0 }
137+
130138
/-- The additive monoid homomorphism including a single additive monoid
131139
into a dependent family of additive monoids, as functions supported at a point.
132140
133141
This is the `add_monoid_hom` version of `pi.single`. -/
134142
@[simps] def add_monoid_hom.single [Π i, add_monoid $ f i] (i : I) : f i →+ Π i, f i :=
135143
{ to_fun := single i,
136-
map_zero' := function.update_eq_self i 0,
137144
map_add' := λ x y, funext $ λ j, begin
138145
refine (apply_single₂ _ (λ _, _) i x y j).symm,
139146
exact zero_add 0,
140-
end, }
147+
end,
148+
.. (zero_hom.single f i) }
141149

142150
/-- The multiplicative homomorphism including a single `monoid_with_zero`
143151
into a dependent family of monoid_with_zeros, as functions supported at a point.
@@ -153,9 +161,9 @@ This is the `mul_hom` version of `pi.single`. -/
153161
variables {f}
154162

155163
@[simp]
156-
lemma pi.single_zero [Π i, add_monoid $ f i] (i : I) :
164+
lemma pi.single_zero [Π i, has_zero $ f i] (i : I) :
157165
single i (0 : f i) = 0 :=
158-
(add_monoid_hom.single f i).map_zero
166+
(zero_hom.single f i).map_zero
159167

160168
lemma pi.single_add [Π i, add_monoid $ f i] (i : I) (x y : f i) :
161169
single i (x + y) = single i x + single i y :=

0 commit comments

Comments
 (0)