Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit de12036

Browse files
committed
chore(data/polynomial): remove monomial_one_eq_X_pow (#4734)
monomial_one_eq_X_pow was a duplicate of X_pow_eq_monomial Co-authored-by: faenuccio <65080144+faenuccio@users.noreply.github.com>
1 parent 6eb5564 commit de12036

File tree

4 files changed

+6
-15
lines changed

4 files changed

+6
-15
lines changed

src/data/polynomial/coeff.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ add_monoid_algebra.mul_single_zero_apply p a n
8686

8787
lemma coeff_X_pow (k n : ℕ) :
8888
coeff (X^k : polynomial R) n = if n = k then 1 else 0 :=
89-
by rw [← monomial_one_eq_X_pow]; simp [monomial, single, eq_comm, coeff]; congr
89+
by { simp only [X_pow_eq_monomial, monomial, single, eq_comm], congr }
9090

9191
@[simp]
9292
lemma coeff_X_pow_self (n : ℕ) :

src/data/polynomial/eval.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -59,7 +59,7 @@ end
5959

6060
@[simp] lemma eval₂_X_pow {n : ℕ} : (X^n).eval₂ f x = x^n :=
6161
begin
62-
rw ←monomial_one_eq_X_pow,
62+
rw X_pow_eq_monomial,
6363
convert eval₂_monomial f x,
6464
simp,
6565
end

src/data/polynomial/monomial.lean

Lines changed: 3 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -83,18 +83,9 @@ begin
8383
simpa only [and_true, eq_self_iff_true, or_false, one_ne_zero, and_self],
8484
end
8585

86-
lemma monomial_one_eq_X_pow : ∀{n}, monomial n (1 : R) = X^n
87-
| 0 := rfl
88-
| (n+1) :=
89-
calc monomial (n + 1) (1 : R) = monomial n 1 * X : by rw [X, monomial_mul_monomial, mul_one]
90-
... = X^n * X : by rw [monomial_one_eq_X_pow]
91-
... = X^(n+1) : by simp only [pow_add, pow_one]
92-
9386
lemma monomial_eq_smul_X {n} : monomial n (a : R) = a • X^n :=
94-
begin
95-
calc monomial n a = monomial n (a * 1) : by simp
96-
... = a • monomial n 1 : (smul_single' _ _ _).symm
97-
... = a • X^n : by rw monomial_one_eq_X_pow
98-
end
87+
calc monomial n a = monomial n (a * 1) : by simp
88+
... = a • monomial n 1 : (smul_single' _ _ _).symm
89+
... = a • X^n : by rw X_pow_eq_monomial
9990

10091
end polynomial

src/ring_theory/polynomial_algebra.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -208,7 +208,7 @@ begin
208208
{ intros n a,
209209
rw [inv_fun, eval₂_monomial, alg_hom.coe_to_ring_hom, algebra.tensor_product.include_left_apply,
210210
algebra.tensor_product.tmul_pow, one_pow, algebra.tensor_product.tmul_mul_tmul,
211-
mul_one, one_mul, to_fun_alg_hom_apply_tmul, ←monomial_one_eq_X_pow],
211+
mul_one, one_mul, to_fun_alg_hom_apply_tmul, X_pow_eq_monomial],
212212
dsimp [monomial],
213213
rw [finsupp.sum_single_index]; simp, }
214214
end

0 commit comments

Comments
 (0)