@@ -10,30 +10,35 @@ namespace category_theory
10
10
universes u₁ v₁ u₂ v₂ u₃ v₃ u₄ v₄
11
11
12
12
section
13
- variables ( C : Type u₁) [𝒞 : category.{v₁} C]
14
- ( D : Type u₂) [𝒟 : category.{v₂} D]
15
- ( E : Type u₃) [ℰ : category.{v₃} E]
13
+ variables { C : Type u₁} [𝒞 : category.{v₁} C]
14
+ { D : Type u₂} [𝒟 : category.{v₂} D]
15
+ { E : Type u₃} [ℰ : category.{v₃} E]
16
16
include 𝒞 𝒟 ℰ
17
17
18
- def whiskering_left : (C ⥤ D) ⥤ ((D ⥤ E) ⥤ (C ⥤ E)) :=
18
+ @[simps] def whisker_left (F : C ⥤ D) {G H : D ⥤ E} (α : G ⟶ H) : (F ⋙ G) ⟶ (F ⋙ H) :=
19
+ { app := λ c, α.app (F.obj c),
20
+ naturality' := λ X Y f, by rw [functor.comp_map, functor.comp_map, α.naturality] }
21
+
22
+ @[simps] def whisker_right {G H : C ⥤ D} (α : G ⟶ H) (F : D ⥤ E) : (G ⋙ F) ⟶ (H ⋙ F) :=
23
+ { app := λ c, F.map (α.app c),
24
+ naturality' := λ X Y f, by rw [functor.comp_map, functor.comp_map, ←F.map_comp, ←F.map_comp, α.naturality] }
25
+
26
+ variables (C D E)
27
+
28
+ @[simps] def whiskering_left : (C ⥤ D) ⥤ ((D ⥤ E) ⥤ (C ⥤ E)) :=
19
29
{ obj := λ F,
20
30
{ obj := λ G, F ⋙ G,
21
- map := λ G H α,
22
- { app := λ c, α.app (F.obj c),
23
- naturality' := by intros X Y f; rw [functor.comp_map, functor.comp_map, α.naturality] } },
31
+ map := λ G H α, whisker_left F α },
24
32
map := λ F G τ,
25
33
{ app := λ H,
26
34
{ app := λ c, H.map (τ.app c),
27
35
naturality' := λ X Y f, begin dsimp, rw [←H.map_comp, ←H.map_comp, ←τ.naturality] end },
28
36
naturality' := λ X Y f, begin ext1, dsimp, rw [f.naturality] end } }
29
37
30
- def whiskering_right : (D ⥤ E) ⥤ ((C ⥤ D) ⥤ (C ⥤ E)) :=
38
+ @[simps] def whiskering_right : (D ⥤ E) ⥤ ((C ⥤ D) ⥤ (C ⥤ E)) :=
31
39
{ obj := λ H,
32
40
{ obj := λ F, F ⋙ H,
33
- map := λ _ _ α,
34
- { app := λ c, H.map (α.app c),
35
- naturality' := by intros X Y f;
36
- rw [functor.comp_map, functor.comp_map, ←H.map_comp, ←H.map_comp, α.naturality] } },
41
+ map := λ _ _ α, whisker_right α H },
37
42
map := λ G H τ,
38
43
{ app := λ F,
39
44
{ app := λ c, τ.app (F.obj c),
@@ -42,38 +47,6 @@ def whiskering_right : (D ⥤ E) ⥤ ((C ⥤ D) ⥤ (C ⥤ E)) :=
42
47
43
48
variables {C} {D} {E}
44
49
45
- def whisker_left (F : C ⥤ D) {G H : D ⥤ E} (α : G ⟶ H) : (F ⋙ G) ⟶ (F ⋙ H) :=
46
- ((whiskering_left C D E).obj F).map α
47
-
48
- @[simp] lemma whiskering_left_obj_obj (F : C ⥤ D) (G : D ⥤ E) :
49
- ((whiskering_left C D E).obj F).obj G = F ⋙ G :=
50
- rfl
51
- @[simp] lemma whiskering_left_obj_map (F : C ⥤ D) {G H : D ⥤ E} (α : G ⟶ H) :
52
- ((whiskering_left C D E).obj F).map α = whisker_left F α :=
53
- rfl
54
- @[simp] lemma whiskering_left_map_app_app {F G : C ⥤ D} (τ : F ⟶ G) (H : D ⥤ E) (c) :
55
- (((whiskering_left C D E).map τ).app H).app c = H.map (τ.app c) :=
56
- rfl
57
- @[simp] lemma whisker_left.app (F : C ⥤ D) {G H : D ⥤ E} (α : G ⟶ H) (X : C) :
58
- (whisker_left F α).app X = α.app (F.obj X) :=
59
- rfl
60
-
61
- def whisker_right {G H : C ⥤ D} (α : G ⟶ H) (F : D ⥤ E) : (G ⋙ F) ⟶ (H ⋙ F) :=
62
- ((whiskering_right C D E).obj F).map α
63
-
64
- @[simp] lemma whiskering_right_obj_obj (G : C ⥤ D) (F : D ⥤ E) :
65
- ((whiskering_right C D E).obj F).obj G = G ⋙ F :=
66
- rfl
67
- @[simp] lemma whiskering_right_obj_map {G H : C ⥤ D} (α : G ⟶ H) (F : D ⥤ E) :
68
- ((whiskering_right C D E).obj F).map α = whisker_right α F :=
69
- rfl
70
- @[simp] lemma whiskering_right_map_app_app (F : C ⥤ D) {G H : D ⥤ E} (τ : G ⟶ H) (c) :
71
- (((whiskering_right C D E).map τ).app F).app c = τ.app (F.obj c) :=
72
- rfl
73
- @[simp] lemma whisker_right.app {G H : C ⥤ D} (α : G ⟶ H) (F : D ⥤ E) (X : C) :
74
- (whisker_right α F).app X = F.map (α.app X) :=
75
- rfl
76
-
77
50
@[simp] lemma whisker_left_id (F : C ⥤ D) {G : D ⥤ E} :
78
51
whisker_left F (nat_trans.id G) = nat_trans.id (F.comp G) :=
79
52
rfl
@@ -166,11 +139,7 @@ omit 𝒟
166
139
lemma triangle (F : A ⥤ B) (G : B ⥤ C) :
167
140
(associator F (𝟭 B) G).hom ≫ (whisker_left F (left_unitor G).hom) =
168
141
(whisker_right (right_unitor F).hom G) :=
169
- begin
170
- ext1,
171
- dsimp [associator, left_unitor, right_unitor],
172
- simp
173
- end
142
+ by { ext1, dsimp, simp }
174
143
175
144
variables {E : Type u₅} [ℰ : category.{v₅} E]
176
145
include 𝒟 ℰ
@@ -180,11 +149,7 @@ variables (F : A ⥤ B) (G : B ⥤ C) (H : C ⥤ D) (K : D ⥤ E)
180
149
lemma pentagon :
181
150
(whisker_right (associator F G H).hom K) ≫ (associator F (G ⋙ H) K).hom ≫ (whisker_left F (associator G H K).hom) =
182
151
((associator (F ⋙ G) H K).hom ≫ (associator F G (H ⋙ K)).hom) :=
183
- begin
184
- ext1,
185
- dsimp [associator],
186
- simp,
187
- end
152
+ by { ext1, dsimp, simp }
188
153
189
154
end functor
190
155
0 commit comments