Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit e1f66f1

Browse files
committed
feat(topology/algebra/group_with_zero): continuity of exponentiation to an integer power (fpow) (#6937)
In a topological group-with-zero (more precisely, in a space with `has_continuous_inv'` and `has_continuous_mul`), the `k`-th power function is continuous for integer `k`, with the possible exception of at 0.
1 parent bcfaabf commit e1f66f1

File tree

1 file changed

+48
-0
lines changed

1 file changed

+48
-0
lines changed

src/topology/algebra/group_with_zero.lean

Lines changed: 48 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@ Authors: Yury G. Kudryashov
55
-/
66
import topology.algebra.monoid
77
import algebra.group.pi
8+
import algebra.group_with_zero.power
89

910
/-!
1011
# Topological group with zero
@@ -160,3 +161,50 @@ lemma continuous_on_div : continuous_on (λ p : G₀ × G₀, p.1 / p.2) {p | p.
160161
continuous_on_fst.div continuous_on_snd $ λ _, id
161162

162163
end div
164+
165+
section fpow
166+
167+
variables [group_with_zero G₀] [topological_space G₀] [has_continuous_inv' G₀]
168+
[has_continuous_mul G₀]
169+
170+
lemma tendsto_fpow {x : G₀} (hx : x ≠ 0) (m : ℤ) : tendsto (λ x, x ^ m) (𝓝 x) (𝓝 (x ^ m)) :=
171+
begin
172+
have : ∀ y : G₀, ∀ m : ℤ, 0 < m → tendsto (λ x, x ^ m) (𝓝 y) (𝓝 (y ^ m)),
173+
{ assume y m hm,
174+
lift m to ℕ using (le_of_lt hm) with k,
175+
simp only [fpow_coe_nat],
176+
exact (continuous_pow k).continuous_at.tendsto },
177+
rcases lt_trichotomy m 0 with hm | hm | hm,
178+
{ have hm' : 0 < - m := by rwa neg_pos,
179+
convert (this _ (-m) hm').comp (tendsto_inv' hx) using 1,
180+
{ ext y,
181+
simp },
182+
{ congr' 1,
183+
simp } },
184+
{ simpa [hm] using tendsto_const_nhds },
185+
{ exact this _ m hm }
186+
end
187+
188+
lemma continuous_at_fpow {x : G₀} (hx : x ≠ 0) (m : ℤ) : continuous_at (λ x, x ^ m) x :=
189+
tendsto_fpow hx m
190+
191+
lemma continuous_on_fpow (m : ℤ) : continuous_on (λ x : G₀, x ^ m) {0}ᶜ :=
192+
λ x hx, (continuous_at_fpow hx m).continuous_within_at
193+
194+
variables {f : α → G₀}
195+
196+
lemma filter.tendsto.fpow {l : filter α} {a : G₀} (hf : tendsto f l (𝓝 a)) (ha : a ≠ 0) (m : ℤ) :
197+
tendsto (λ x, (f x) ^ m) l (𝓝 (a ^ m)) :=
198+
(tendsto_fpow ha m).comp hf
199+
200+
variables [topological_space α] {a : α}
201+
202+
lemma continuous_at.fpow (hf : continuous_at f a) (ha : f a ≠ 0) (m : ℤ) :
203+
continuous_at (λ x, (f x) ^ m) a :=
204+
(continuous_at_fpow ha m).comp hf
205+
206+
lemma continuous.fpow (hf : continuous f) (h0 : ∀ a, f a ≠ 0) (m : ℤ) :
207+
continuous (λ x, (f x) ^ m) :=
208+
continuous_iff_continuous_at.2 $ λ x, (hf.tendsto x).fpow (h0 x) m
209+
210+
end fpow

0 commit comments

Comments
 (0)