@@ -204,7 +204,7 @@ iff.rfl
204
204
205
205
lemma lift_pred_const {p : β → Prop } {x : β} (hx : p x) :
206
206
lift_pred p (↑x : germ l β) :=
207
- eventually_of_forall _ $ λ y, hx
207
+ eventually_of_forall $ λ y, hx
208
208
209
209
@[simp] lemma lift_pred_const_iff (hl : l ≠ ⊥) {p : β → Prop } {x : β} :
210
210
lift_pred p (↑x : germ l β) ↔ p x :=
@@ -221,7 +221,7 @@ iff.rfl
221
221
222
222
lemma lift_rel_const {r : β → γ → Prop } {x : β} {y : γ} (h : r x y) :
223
223
lift_rel r (↑x : germ l β) ↑y :=
224
- eventually_of_forall _ $ λ _, h
224
+ eventually_of_forall $ λ _, h
225
225
226
226
@[simp] lemma lift_rel_const_iff (hl : l ≠ ⊥) {r : β → γ → Prop } {x : β} {y : γ} :
227
227
lift_rel r (↑x : germ l β) ↑y ↔ r x y :=
@@ -446,7 +446,7 @@ instance [has_bot β] : has_bot (germ l β) := ⟨↑(⊥:β)⟩
446
446
instance [order_bot β] : order_bot (germ l β) :=
447
447
{ bot := ⊥,
448
448
le := (≤),
449
- bot_le := λ f, induction_on f $ λ f, eventually_of_forall _ $ λ x, bot_le,
449
+ bot_le := λ f, induction_on f $ λ f, eventually_of_forall $ λ x, bot_le,
450
450
.. germ.partial_order }
451
451
452
452
instance [has_top β] : has_top (germ l β) := ⟨↑(⊤:β)⟩
@@ -456,7 +456,7 @@ instance [has_top β] : has_top (germ l β) := ⟨↑(⊤:β)⟩
456
456
instance [order_top β] : order_top (germ l β) :=
457
457
{ top := ⊤,
458
458
le := (≤),
459
- le_top := λ f, induction_on f $ λ f, eventually_of_forall _ $ λ x, le_top,
459
+ le_top := λ f, induction_on f $ λ f, eventually_of_forall $ λ x, le_top,
460
460
.. germ.partial_order }
461
461
462
462
instance [has_sup β] : has_sup (germ l β) := ⟨map₂ (⊔)⟩
@@ -470,19 +470,19 @@ instance [has_inf β] : has_inf (germ l β) := ⟨map₂ (⊓)⟩
470
470
instance [semilattice_sup β] : semilattice_sup (germ l β) :=
471
471
{ sup := (⊔),
472
472
le_sup_left := λ f g, induction_on₂ f g $ λ f g,
473
- eventually_of_forall _ $ λ x, le_sup_left,
473
+ eventually_of_forall $ λ x, le_sup_left,
474
474
le_sup_right := λ f g, induction_on₂ f g $ λ f g,
475
- eventually_of_forall _ $ λ x, le_sup_right,
475
+ eventually_of_forall $ λ x, le_sup_right,
476
476
sup_le := λ f₁ f₂ g, induction_on₃ f₁ f₂ g $ λ f₁ f₂ g h₁ h₂,
477
477
h₂.mp $ h₁.mono $ λ x, sup_le,
478
478
.. germ.partial_order }
479
479
480
480
instance [semilattice_inf β] : semilattice_inf (germ l β) :=
481
481
{ inf := (⊓),
482
482
inf_le_left := λ f g, induction_on₂ f g $ λ f g,
483
- eventually_of_forall _ $ λ x, inf_le_left,
483
+ eventually_of_forall $ λ x, inf_le_left,
484
484
inf_le_right := λ f g, induction_on₂ f g $ λ f g,
485
- eventually_of_forall _ $ λ x, inf_le_right,
485
+ eventually_of_forall $ λ x, inf_le_right,
486
486
le_inf := λ f₁ f₂ g, induction_on₃ f₁ f₂ g $ λ f₁ f₂ g h₁ h₂,
487
487
h₂.mp $ h₁.mono $ λ x, le_inf,
488
488
.. germ.partial_order }
0 commit comments