Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit e236160

Browse files
committed
chore(order/filter/basic): implicit arg in eventually_of_forall (#3277)
Make `l : filter α` argument of `eventually_of_forall` implicit because everywhere in `mathlib` it was used as `eventually_of_forall _`.
1 parent 56ed551 commit e236160

File tree

12 files changed

+42
-42
lines changed

12 files changed

+42
-42
lines changed

src/analysis/calculus/deriv.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1174,7 +1174,7 @@ theorem has_strict_deriv_at_inv (hx : x ≠ 0) : has_strict_deriv_at has_inv.inv
11741174
begin
11751175
suffices : is_o (λ p : 𝕜 × 𝕜, (p.1 - p.2) * ((x * x)⁻¹ - (p.1 * p.2)⁻¹))
11761176
(λ (p : 𝕜 × 𝕜), (p.1 - p.2) * 1) (𝓝 (x, x)),
1177-
{ refine this.congr' _ (eventually_of_forall _ $ λ _, mul_one _),
1177+
{ refine this.congr' _ (eventually_of_forall $ λ _, mul_one _),
11781178
refine eventually.mono (mem_nhds_sets (is_open_prod is_open_ne is_open_ne) ⟨hx, hx⟩) _,
11791179
rintro ⟨y, z⟩ ⟨hy, hz⟩,
11801180
simp only [mem_set_of_eq] at hy hz, -- hy : y ≠ 0, hz : z ≠ 0

src/analysis/calculus/fderiv.lean

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -589,7 +589,7 @@ theorem filter.eventually_eq.has_strict_fderiv_at_iff
589589
(h : f₀ =ᶠ[𝓝 x] f₁) (h' : ∀ y, f₀' y = f₁' y) :
590590
has_strict_fderiv_at f₀ f₀' x ↔ has_strict_fderiv_at f₁ f₁' x :=
591591
begin
592-
refine is_o_congr ((h.prod_mk_nhds h).mono _) (eventually_of_forall _ $ λ _, rfl),
592+
refine is_o_congr ((h.prod_mk_nhds h).mono _) (eventually_of_forall $ λ _, rfl),
593593
rintros p ⟨hp₁, hp₂⟩,
594594
simp only [*]
595595
end
@@ -601,7 +601,7 @@ theorem has_strict_fderiv_at.congr_of_eventually_eq (h : has_strict_fderiv_at f
601601
theorem filter.eventually_eq.has_fderiv_at_filter_iff
602602
(h₀ : f₀ =ᶠ[L] f₁) (hx : f₀ x = f₁ x) (h₁ : ∀ x, f₀' x = f₁' x) :
603603
has_fderiv_at_filter f₀ f₀' x L ↔ has_fderiv_at_filter f₁ f₁' x L :=
604-
is_o_congr (h₀.mono $ λ y hy, by simp only [hy, h₁, hx]) (eventually_of_forall _ $ λ _, rfl)
604+
is_o_congr (h₀.mono $ λ y hy, by simp only [hy, h₁, hx]) (eventually_of_forall $ λ _, rfl)
605605

606606
lemma has_fderiv_at_filter.congr_of_eventually_eq (h : has_fderiv_at_filter f f' x L)
607607
(hL : f₁ =ᶠ[L] f) (hx : f₁ x = f x) : has_fderiv_at_filter f₁ f' x L :=
@@ -2225,11 +2225,11 @@ begin
22252225
simp },
22262226
refine this.trans_is_o _, clear this,
22272227
refine ((hf.comp_tendsto hg).symm.congr' (hfg.mono _)
2228-
(eventually_of_forall _ $ λ _, rfl)).trans_is_O _,
2228+
(eventually_of_forall $ λ _, rfl)).trans_is_O _,
22292229
{ rintros p ⟨hp1, hp2⟩,
22302230
simp [hp1, hp2] },
22312231
{ refine (hf.is_O_sub_rev.comp_tendsto hg).congr'
2232-
(eventually_of_forall _ $ λ _, rfl) (hfg.mono _),
2232+
(eventually_of_forall $ λ _, rfl) (hfg.mono _),
22332233
rintros p ⟨hp1, hp2⟩,
22342234
simp only [(∘), hp1, hp2] }
22352235
end
@@ -2249,11 +2249,11 @@ begin
22492249
simp },
22502250
refine this.trans_is_o _, clear this,
22512251
refine ((hf.comp_tendsto hg).symm.congr' (hfg.mono _)
2252-
(eventually_of_forall _ $ λ _, rfl)).trans_is_O _,
2252+
(eventually_of_forall $ λ _, rfl)).trans_is_O _,
22532253
{ rintros p hp,
22542254
simp [hp, hfg.self_of_nhds] },
22552255
{ refine (hf.is_O_sub_rev.comp_tendsto hg).congr'
2256-
(eventually_of_forall _ $ λ _, rfl) (hfg.mono _),
2256+
(eventually_of_forall $ λ _, rfl) (hfg.mono _),
22572257
rintros p hp,
22582258
simp only [(∘), hp, hfg.self_of_nhds] }
22592259
end

src/analysis/normed_space/bounded_linear_maps.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -219,7 +219,7 @@ variable {f : E × F → G}
219219
protected lemma is_bounded_bilinear_map.is_O (h : is_bounded_bilinear_map 𝕜 f) :
220220
asymptotics.is_O f (λ p : E × F, ∥p.1∥ * ∥p.2∥) ⊤ :=
221221
let ⟨C, Cpos, hC⟩ := h.bound in asymptotics.is_O.of_bound _ $
222-
filter.eventually_of_forall $ λ ⟨x, y⟩, by simpa [mul_assoc] using hC x y
222+
filter.eventually_of_forall $ λ ⟨x, y⟩, by simpa [mul_assoc] using hC x y
223223

224224
lemma is_bounded_bilinear_map.is_O_comp {α : Type*} (H : is_bounded_bilinear_map 𝕜 f)
225225
{g : α → E} {h : α → F} {l : filter α} :

src/analysis/normed_space/multilinear.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -512,7 +512,7 @@ begin
512512
apply add_le_add_right,
513513
simpa [dist_eq_norm] using b_bound n 0 0 (zero_le _) (zero_le _)
514514
end },
515-
exact le_of_tendsto at_top_ne_bot (hF v).norm (eventually_of_forall _ A) },
515+
exact le_of_tendsto at_top_ne_bot (hF v).norm (eventually_of_forall A) },
516516
-- Thus `F` is continuous, and we propose that as the limit point of our original Cauchy sequence.
517517
let Fcont := Fmult.mk_continuous _ Fnorm,
518518
use Fcont,

src/analysis/normed_space/operator_norm.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -470,7 +470,7 @@ begin
470470
apply add_le_add_right,
471471
simpa [dist_eq_norm] using b_bound n 0 0 (zero_le _) (zero_le _)
472472
end },
473-
exact le_of_tendsto at_top_ne_bot (hG v).norm (eventually_of_forall _ A) },
473+
exact le_of_tendsto at_top_ne_bot (hG v).norm (eventually_of_forall A) },
474474
-- Thus `G` is continuous, and we propose that as the limit point of our original Cauchy sequence.
475475
let Gcont := Glin.mk_continuous _ Gnorm,
476476
use Gcont,

src/measure_theory/measure_space.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -729,7 +729,7 @@ lemma measure_zero_iff_ae_nmem {s : set α} : μ s = 0 ↔ ∀ₘ a ∂ μ, a
729729
by simp only [ae_iff, not_not, set_of_mem_eq]
730730

731731
lemma ae_of_all {p : α → Prop} (μ : measure α) : (∀a, p a) → ∀ₘ a ∂ μ, p a :=
732-
eventually_of_forall _
732+
eventually_of_forall
733733

734734
instance : countable_Inter_filter μ.ae :=
735735
begin

src/order/filter/at_top_bot.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -116,7 +116,7 @@ assume h₁, (tendsto_at_top _ _).2 $ λ b, mp_sets ((tendsto_at_top _ _).1 h₁
116116

117117
lemma tendsto_at_top_mono [preorder β] {l : filter α} {f g : α → β} (h : ∀ n, f n ≤ g n) :
118118
tendsto f l at_top → tendsto g l at_top :=
119-
tendsto_at_top_mono' l $ eventually_of_forall _ h
119+
tendsto_at_top_mono' l $ eventually_of_forall h
120120

121121
/-!
122122
### Sequences

src/order/filter/basic.lean

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -840,7 +840,7 @@ inter_mem_sets
840840
@[simp]
841841
lemma eventually_true (f : filter α) : ∀ᶠ x in f, true := univ_mem_sets
842842

843-
lemma eventually_of_forall {p : α → Prop} (f : filter α) (hp : ∀ x, p x) :
843+
lemma eventually_of_forall {p : α → Prop} {f : filter α} (hp : ∀ x, p x) :
844844
∀ᶠ x in f, p x :=
845845
univ_mem_sets' hp
846846

@@ -852,13 +852,13 @@ empty_in_sets_eq_bot
852852
(∀ᶠ x in f, p) ↔ p :=
853853
classical.by_cases (λ h : p, by simp [h]) (λ h, by simp [h, hf])
854854

855-
lemma eventually.exists_mem {p : α → Prop} {f : filter α} (hp : ∀ᶠ x in f, p x) :
856-
∃ v ∈ f, ∀ y ∈ v, p y :=
857-
⟨{x | p x}, hp, λ y hy, hy⟩
858-
859855
lemma eventually_iff_exists_mem {p : α → Prop} {f : filter α} :
860856
(∀ᶠ x in f, p x) ↔ ∃ v ∈ f, ∀ y ∈ v, p y :=
861-
⟨λ hp, hp.exists_mem, λ ⟨v, vf, hv⟩, eventually_of_mem vf hv⟩
857+
exists_sets_subset_iff.symm
858+
859+
lemma eventually.exists_mem {p : α → Prop} {f : filter α} (hp : ∀ᶠ x in f, p x) :
860+
∃ v ∈ f, ∀ y ∈ v, p y :=
861+
eventually_iff_exists_mem.1 hp
862862

863863
lemma eventually.mp {p q : α → Prop} {f : filter α} (hp : ∀ᶠ x in f, p x)
864864
(hq : ∀ᶠ x in f, p x → q x) :
@@ -868,7 +868,7 @@ mp_sets hp hq
868868
lemma eventually.mono {p q : α → Prop} {f : filter α} (hp : ∀ᶠ x in f, p x)
869869
(hq : ∀ x, p x → q x) :
870870
∀ᶠ x in f, q x :=
871-
hp.mp (f.eventually_of_forall hq)
871+
hp.mp (eventually_of_forall hq)
872872

873873
@[simp] lemma eventually_and {p q : α → Prop} {f : filter α} :
874874
(∀ᶠ x in f, p x ∧ q x) ↔ (∀ᶠ x in f, p x) ∧ (∀ᶠ x in f, q x) :=
@@ -939,7 +939,7 @@ end
939939

940940
lemma frequently_of_forall {f : filter α} (hf : f ≠ ⊥) {p : α → Prop} (h : ∀ x, p x) :
941941
∃ᶠ x in f, p x :=
942-
eventually.frequently hf (f.eventually_of_forall h)
942+
eventually.frequently hf (eventually_of_forall h)
943943

944944
lemma frequently.mp {p q : α → Prop} {f : filter α} (h : ∃ᶠ x in f, p x)
945945
(hpq : ∀ᶠ x in f, p x → q x) :
@@ -949,7 +949,7 @@ mt (λ hq, hq.mp $ hpq.mono $ λ x, mt) h
949949
lemma frequently.mono {p q : α → Prop} {f : filter α} (h : ∃ᶠ x in f, p x)
950950
(hpq : ∀ x, p x → q x) :
951951
∃ᶠ x in f, q x :=
952-
h.mp (f.eventually_of_forall hpq)
952+
h.mp (eventually_of_forall hpq)
953953

954954
lemma frequently.and_eventually {p q : α → Prop} {f : filter α}
955955
(hp : ∃ᶠ x in f, p x) (hq : ∀ᶠ x in f, q x) :
@@ -963,7 +963,7 @@ end
963963
lemma frequently.exists {p : α → Prop} {f : filter α} (hp : ∃ᶠ x in f, p x) : ∃ x, p x :=
964964
begin
965965
by_contradiction H,
966-
replace H : ∀ᶠ x in f, ¬ p x, from f.eventually_of_forall (not_exists.1 H),
966+
replace H : ∀ᶠ x in f, ¬ p x, from eventually_of_forall (not_exists.1 H),
967967
exact hp H
968968
end
969969

@@ -1104,7 +1104,7 @@ eventually_iff_exists_mem
11041104

11051105
@[refl] lemma eventually_eq.refl (l : filter α) (f : α → β) :
11061106
f =ᶠ[l] f :=
1107-
eventually_of_forall l $ λ x, rfl
1107+
eventually_of_forall $ λ x, rfl
11081108

11091109
@[symm] lemma eventually_eq.symm {f g : α → β} {l : filter α} (H : f =ᶠ[l] g) :
11101110
g =ᶠ[l] f :=

src/order/filter/filter_product.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ protected def field [field β] (U : is_ultrafilter φ) : field β* :=
4949
/-- If `φ` is an ultrafilter then the ultraproduct is a linear order.
5050
This cannot be an instance, since it depends on `φ` being an ultrafilter. -/
5151
protected def linear_order [linear_order β] (U : is_ultrafilter φ) : linear_order β* :=
52-
{ le_total := λ f g, induction_on₂ f g $ λ f g, U.eventually_or.1 $ eventually_of_forall _ $
52+
{ le_total := λ f g, induction_on₂ f g $ λ f g, U.eventually_or.1 $ eventually_of_forall $
5353
λ x, le_total _ _,
5454
.. germ.partial_order }
5555

src/order/filter/germ.lean

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -204,7 +204,7 @@ iff.rfl
204204

205205
lemma lift_pred_const {p : β → Prop} {x : β} (hx : p x) :
206206
lift_pred p (↑x : germ l β) :=
207-
eventually_of_forall _ $ λ y, hx
207+
eventually_of_forall $ λ y, hx
208208

209209
@[simp] lemma lift_pred_const_iff (hl : l ≠ ⊥) {p : β → Prop} {x : β} :
210210
lift_pred p (↑x : germ l β) ↔ p x :=
@@ -221,7 +221,7 @@ iff.rfl
221221

222222
lemma lift_rel_const {r : β → γ → Prop} {x : β} {y : γ} (h : r x y) :
223223
lift_rel r (↑x : germ l β) ↑y :=
224-
eventually_of_forall _ $ λ _, h
224+
eventually_of_forall $ λ _, h
225225

226226
@[simp] lemma lift_rel_const_iff (hl : l ≠ ⊥) {r : β → γ → Prop} {x : β} {y : γ} :
227227
lift_rel r (↑x : germ l β) ↑y ↔ r x y :=
@@ -446,7 +446,7 @@ instance [has_bot β] : has_bot (germ l β) := ⟨↑(⊥:β)⟩
446446
instance [order_bot β] : order_bot (germ l β) :=
447447
{ bot := ⊥,
448448
le := (≤),
449-
bot_le := λ f, induction_on f $ λ f, eventually_of_forall _ $ λ x, bot_le,
449+
bot_le := λ f, induction_on f $ λ f, eventually_of_forall $ λ x, bot_le,
450450
.. germ.partial_order }
451451

452452
instance [has_top β] : has_top (germ l β) := ⟨↑(⊤:β)⟩
@@ -456,7 +456,7 @@ instance [has_top β] : has_top (germ l β) := ⟨↑(⊤:β)⟩
456456
instance [order_top β] : order_top (germ l β) :=
457457
{ top := ⊤,
458458
le := (≤),
459-
le_top := λ f, induction_on f $ λ f, eventually_of_forall _ $ λ x, le_top,
459+
le_top := λ f, induction_on f $ λ f, eventually_of_forall $ λ x, le_top,
460460
.. germ.partial_order }
461461

462462
instance [has_sup β] : has_sup (germ l β) := ⟨map₂ (⊔)⟩
@@ -470,19 +470,19 @@ instance [has_inf β] : has_inf (germ l β) := ⟨map₂ (⊓)⟩
470470
instance [semilattice_sup β] : semilattice_sup (germ l β) :=
471471
{ sup := (⊔),
472472
le_sup_left := λ f g, induction_on₂ f g $ λ f g,
473-
eventually_of_forall _ $ λ x, le_sup_left,
473+
eventually_of_forall $ λ x, le_sup_left,
474474
le_sup_right := λ f g, induction_on₂ f g $ λ f g,
475-
eventually_of_forall _ $ λ x, le_sup_right,
475+
eventually_of_forall $ λ x, le_sup_right,
476476
sup_le := λ f₁ f₂ g, induction_on₃ f₁ f₂ g $ λ f₁ f₂ g h₁ h₂,
477477
h₂.mp $ h₁.mono $ λ x, sup_le,
478478
.. germ.partial_order }
479479

480480
instance [semilattice_inf β] : semilattice_inf (germ l β) :=
481481
{ inf := (⊓),
482482
inf_le_left := λ f g, induction_on₂ f g $ λ f g,
483-
eventually_of_forall _ $ λ x, inf_le_left,
483+
eventually_of_forall $ λ x, inf_le_left,
484484
inf_le_right := λ f g, induction_on₂ f g $ λ f g,
485-
eventually_of_forall _ $ λ x, inf_le_right,
485+
eventually_of_forall $ λ x, inf_le_right,
486486
le_inf := λ f₁ f₂ g, induction_on₃ f₁ f₂ g $ λ f₁ f₂ g h₁ h₂,
487487
h₂.mp $ h₁.mono $ λ x, le_inf,
488488
.. germ.partial_order }

0 commit comments

Comments
 (0)