|
| 1 | +/- |
| 2 | +Copyright (c) 2020 Scott Morrison. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Scott Morrison |
| 5 | +-/ |
| 6 | +import category_theory.monoidal.category |
| 7 | + |
| 8 | +/-! |
| 9 | +# The two morphisms `λ_ (𝟙_ C)` and `ρ_ (𝟙_ C)` from `𝟙_ C ⊗ 𝟙_ C` to `𝟙_ C` are equal. |
| 10 | +
|
| 11 | +This is suprisingly difficult to prove directly from the usual axioms for a monoidal category! |
| 12 | +
|
| 13 | +This proof follows the diagram given at |
| 14 | +https://people.math.osu.edu/penneys.2/QS2019/VicaryHandout.pdf |
| 15 | +
|
| 16 | +It should be a consequence of the coherence theorem for monoidal categories |
| 17 | +(although quite possibly it is a necessary building block of any proof). |
| 18 | +-/ |
| 19 | + |
| 20 | +universes v u |
| 21 | + |
| 22 | +namespace category_theory.monoidal_category |
| 23 | + |
| 24 | +open category_theory |
| 25 | +open category_theory.category |
| 26 | +open category_theory.monoidal_category |
| 27 | + |
| 28 | +variables {C : Type u} [category.{v} C] [monoidal_category.{v} C] |
| 29 | + |
| 30 | +namespace unitors_equal |
| 31 | + |
| 32 | +lemma cells_1_2 : |
| 33 | + (ρ_ (𝟙_ C)).hom = |
| 34 | + (λ_ ((𝟙_ C) ⊗ (𝟙_ C))).inv ≫ ((𝟙 (𝟙_ C)) ⊗ (ρ_ (𝟙_ C)).hom) ≫ (λ_ (𝟙_ C)).hom := |
| 35 | +by rw [left_unitor_conjugation] |
| 36 | + |
| 37 | +lemma cells_4 : |
| 38 | + (λ_ ((𝟙_ C) ⊗ (𝟙_ C))).inv ≫ ((𝟙 (𝟙_ C)) ⊗ ((λ_ (𝟙_ C)).hom)) = |
| 39 | + (λ_ (𝟙_ C)).hom ≫ (λ_ (𝟙_ C)).inv := |
| 40 | +by rw [←left_unitor_inv_naturality, iso.hom_inv_id] |
| 41 | + |
| 42 | +lemma cells_4' : |
| 43 | + (λ_ ((𝟙_ C) ⊗ (𝟙_ C))).inv = |
| 44 | + (λ_ (𝟙_ C)).hom ≫ (λ_ (𝟙_ C)).inv ≫ ((𝟙 (𝟙_ C)) ⊗ ((λ_ (𝟙_ C)).inv)) := |
| 45 | +by rw [←assoc, ←cells_4, assoc, ←id_tensor_comp, iso.hom_inv_id, tensor_id, comp_id] |
| 46 | + |
| 47 | +lemma cells_3_4 : |
| 48 | + (λ_ ((𝟙_ C) ⊗ (𝟙_ C))).inv = (𝟙 (𝟙_ C)) ⊗ ((λ_ (𝟙_ C)).inv) := |
| 49 | +by rw [cells_4', ←assoc, iso.hom_inv_id, id_comp] |
| 50 | + |
| 51 | +lemma cells_1_4 : |
| 52 | + (ρ_ (𝟙_ C)).hom = |
| 53 | + ((𝟙 (𝟙_ C)) ⊗ ((λ_ (𝟙_ C)).inv)) ≫ ((𝟙 (𝟙_ C)) ⊗ (ρ_ (𝟙_ C)).hom) ≫ (λ_ (𝟙_ C)).hom := |
| 54 | +begin |
| 55 | + rw [←cells_3_4], |
| 56 | + conv_lhs { rw [cells_1_2] }, |
| 57 | +end |
| 58 | + |
| 59 | +lemma cells_6 : |
| 60 | + ((ρ_ (𝟙_ C)).inv ⊗ (𝟙 (𝟙_ C))) ≫ (ρ_ ((𝟙_ C) ⊗ (𝟙_ C))).hom = |
| 61 | + (ρ_ (𝟙_ C)).hom ≫ (ρ_ (𝟙_ C)).inv := |
| 62 | +by rw [right_unitor_naturality, iso.hom_inv_id] |
| 63 | + |
| 64 | +lemma cells_6' : |
| 65 | + ((ρ_ (𝟙_ C)).inv ⊗ (𝟙 (𝟙_ C))) = |
| 66 | + (ρ_ (𝟙_ C)).hom ≫ (ρ_ (𝟙_ C)).inv ≫ (ρ_ ((𝟙_ C) ⊗ (𝟙_ C))).inv := |
| 67 | +by {rw [←assoc, ←cells_6, assoc, iso.hom_inv_id, comp_id], } |
| 68 | + |
| 69 | +lemma cells_5_6 : ((ρ_ (𝟙_ C)).inv ⊗ (𝟙 (𝟙_ C))) = (ρ_ (𝟙_ C ⊗ 𝟙_ C)).inv := |
| 70 | +by rw [cells_6', ←assoc, iso.hom_inv_id, id_comp] |
| 71 | + |
| 72 | +lemma cells_7 : |
| 73 | + ((𝟙 (𝟙_ C)) ⊗ ((λ_ (𝟙_ C)).inv)) = |
| 74 | + ((ρ_ (𝟙_ C)).inv ⊗ (𝟙 (𝟙_ C))) ≫ (α_ (𝟙_ C) (𝟙_ C) (𝟙_ C)).hom := |
| 75 | +by simp only [triangle_assoc_comp_right_inv, tensor_left_iff] |
| 76 | + |
| 77 | +lemma cells_1_7 : |
| 78 | + (ρ_ (𝟙_ C)).hom = |
| 79 | + (ρ_ ((𝟙_ C) ⊗ (𝟙_ C))).inv ≫ (α_ (𝟙_ C) (𝟙_ C) (𝟙_ C)).hom ≫ |
| 80 | + ((𝟙 (𝟙_ C)) ⊗ (ρ_ (𝟙_ C)).hom) ≫ (λ_ (𝟙_ C)).hom := |
| 81 | +begin |
| 82 | + conv_lhs { rw [cells_1_4] }, |
| 83 | + conv_lhs { congr, rw [cells_7] }, |
| 84 | + conv_lhs { congr, congr, rw [cells_5_6] }, |
| 85 | + conv_rhs { rw [←assoc] } |
| 86 | +end |
| 87 | + |
| 88 | +lemma cells_8 : |
| 89 | + (α_ (𝟙_ C) (𝟙_ C) (𝟙_ C)).hom = |
| 90 | + (ρ_ (((𝟙_ C) ⊗ (𝟙_ C)) ⊗ (𝟙_ C))).inv ≫ ((α_ (𝟙_ C) (𝟙_ C) (𝟙_ C)).hom ⊗ 𝟙 (𝟙_ C)) ≫ |
| 91 | + (ρ_ ((𝟙_ C) ⊗ ((𝟙_ C) ⊗ (𝟙_ C)))).hom := |
| 92 | +by rw [right_unitor_conjugation]. |
| 93 | + |
| 94 | +lemma cells_14 : |
| 95 | + (ρ_ ((𝟙_ C) ⊗ (𝟙_ C))).inv ≫ (ρ_ (((𝟙_ C) ⊗ (𝟙_ C)) ⊗ (𝟙_ C))).inv = |
| 96 | + (ρ_ ((𝟙_ C) ⊗ (𝟙_ C))).inv ≫ ((ρ_ ((𝟙_ C) ⊗ (𝟙_ C))).inv ⊗ (𝟙 (𝟙_ C))) := |
| 97 | +by rw [right_unitor_inv_naturality] |
| 98 | + |
| 99 | +lemma cells_9 : |
| 100 | + ((α_ (𝟙_ C) (𝟙_ C) (𝟙_ C)).hom ⊗ 𝟙 (𝟙_ C)) = |
| 101 | + (α_ ((𝟙_ C) ⊗ (𝟙_ C)) (𝟙_ C) (𝟙_ C)).hom ≫ (α_ (𝟙_ C) (𝟙_ C) ((𝟙_ C) ⊗ (𝟙_ C))).hom ≫ |
| 102 | + ((𝟙 (𝟙_ C)) ⊗ (α_ (𝟙_ C) (𝟙_ C) (𝟙_ C)).inv) ≫ (α_ (𝟙_ C) ((𝟙_ C) ⊗ (𝟙_ C)) (𝟙_ C)).inv := |
| 103 | +begin |
| 104 | + slice_rhs 1 2 { rw ←(monoidal_category.pentagon (𝟙_ C) (𝟙_ C) (𝟙_ C) (𝟙_ C)) }, |
| 105 | + slice_rhs 3 4 { rw [←id_tensor_comp, iso.hom_inv_id], }, |
| 106 | + simp, |
| 107 | +end |
| 108 | + |
| 109 | +lemma cells_10_13 : |
| 110 | + ((ρ_ ((𝟙_ C) ⊗ (𝟙_ C))).inv ⊗ (𝟙 (𝟙_ C))) ≫ (α_ ((𝟙_ C) ⊗ (𝟙_ C)) (𝟙_ C) (𝟙_ C)).hom ≫ |
| 111 | + (α_ (𝟙_ C) (𝟙_ C) ((𝟙_ C) ⊗ (𝟙_ C))).hom ≫ ((𝟙 (𝟙_ C)) ⊗ (α_ (𝟙_ C) (𝟙_ C) (𝟙_ C)).inv) ≫ |
| 112 | + (α_ (𝟙_ C) ((𝟙_ C) ⊗ (𝟙_ C)) (𝟙_ C)).inv = |
| 113 | + ((𝟙 (𝟙_ C)) ⊗ (ρ_ (𝟙_ C)).inv) ⊗ (𝟙 (𝟙_ C)) := |
| 114 | +begin |
| 115 | + slice_lhs 1 2 { simp, }, |
| 116 | + slice_lhs 1 2 { rw [←tensor_id, associator_naturality], }, |
| 117 | + slice_lhs 2 3 { rw [←id_tensor_comp], simp, }, |
| 118 | + slice_lhs 1 2 { rw ←associator_naturality, }, |
| 119 | + simp, |
| 120 | +end |
| 121 | + |
| 122 | +lemma cells_9_13 : |
| 123 | + ((ρ_ ((𝟙_ C) ⊗ (𝟙_ C))).inv ⊗ (𝟙 (𝟙_ C))) ≫ ((α_ (𝟙_ C) (𝟙_ C) (𝟙_ C)).hom ⊗ 𝟙 (𝟙_ C)) = |
| 124 | + ((𝟙 (𝟙_ C)) ⊗ (ρ_ (𝟙_ C)).inv) ⊗ (𝟙 (𝟙_ C)) := |
| 125 | +begin |
| 126 | + rw [cells_9, ←cells_10_13] |
| 127 | +end |
| 128 | + |
| 129 | +lemma cells_15 : |
| 130 | + (ρ_ ((𝟙_ C) ⊗ (𝟙_ C))).inv ≫ (((𝟙 (𝟙_ C)) ⊗ (ρ_ (𝟙_ C)).inv) ⊗ (𝟙 (𝟙_ C))) ≫ |
| 131 | + (ρ_ ((𝟙_ C) ⊗ ((𝟙_ C) ⊗ (𝟙_ C)))).hom ≫ ((𝟙 (𝟙_ C)) ⊗ (ρ_ (𝟙_ C)).hom) = |
| 132 | + 𝟙 _ := |
| 133 | +begin |
| 134 | + slice_lhs 1 2 { rw [←right_unitor_inv_naturality] }, |
| 135 | + slice_lhs 2 3 { rw [iso.inv_hom_id] }, |
| 136 | + rw [id_comp, ←id_tensor_comp, iso.inv_hom_id, tensor_id], |
| 137 | +end |
| 138 | + |
| 139 | +end unitors_equal |
| 140 | + |
| 141 | +open unitors_equal |
| 142 | + |
| 143 | +lemma unitors_equal : (λ_ (𝟙_ C)).hom = (ρ_ (𝟙_ C)).hom := |
| 144 | +begin |
| 145 | + rw cells_1_7, |
| 146 | + rw cells_8, |
| 147 | + slice_rhs 1 2 { rw cells_14 }, |
| 148 | + slice_rhs 2 3 { rw cells_9_13 }, |
| 149 | + slice_rhs 1 4 { rw cells_15 }, |
| 150 | + rw id_comp, |
| 151 | +end |
| 152 | + |
| 153 | +end category_theory.monoidal_category |
0 commit comments