Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit e350114

Browse files
committed
feat(data/equiv/basic): rfl lemma for equiv_congr (#5585)
1 parent 57c6d19 commit e350114

File tree

1 file changed

+3
-0
lines changed

1 file changed

+3
-0
lines changed

src/data/equiv/basic.lean

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -246,6 +246,9 @@ def equiv_congr {δ} (ab : α ≃ β) (cd : γ ≃ δ) : (α ≃ γ) ≃ (β ≃
246246
⟨ λac, (ab.symm.trans ac).trans cd, λbd, ab.trans $ bd.trans $ cd.symm,
247247
assume ac, by { ext x, simp }, assume ac, by { ext x, simp } ⟩
248248

249+
@[simp] lemma equiv_congr_apply_apply {δ} (ab : α ≃ β) (cd : γ ≃ δ) (e : α ≃ γ) (x) :
250+
ab.equiv_congr cd e x = cd (e (ab.symm x)) := rfl
251+
249252
/-- If `α` is equivalent to `β`, then `perm α` is equivalent to `perm β`. -/
250253
def perm_congr {α : Type*} {β : Type*} (e : α ≃ β) : perm α ≃ perm β :=
251254
equiv_congr e e

0 commit comments

Comments
 (0)